Advertisement

Multispectral Fluorescence Imaging Allows for Distinctive Topographic Assessment and Subclassification of Tumor-Infiltrating and Surrounding Immune Cells

  • Claudia Wickenhauser
  • Daniel Bethmann
  • Zipei Feng
  • Shawn M. Jensen
  • Carmen Ballesteros-Merino
  • Chiara Massa
  • Andre Steven
  • Marcus Bauer
  • Peter Kaatzsch
  • Nikolaos Pazaitis
  • Georgiana Toma
  • Carlo B. Bifulco
  • Bernard A. Fox
  • Barbara SeligerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1913)

Abstract

Histomorphology has significantly changed over the last decades due to technological achievements in immunohistochemistry (IHC) for the visualization of specific proteins and in molecular pathology, particularly in the field of in situ hybridization of small oligonucleotides and amplification of DNA and RNA amplicons. With an increased availability of suitable methods, the demands regarding the observer of histomorphological slides were the supply of complex quantitative data as well as more information about protein expression and cell-cell interactions in tissue sections. Advances in fluorescence-based multiplexed IHC techniques, such as multispectral imaging (MSI), allow the quantification of multiple proteins at the same tissue section. In histopathology, it is a well-known technique for over a decade yet harboring serious problems concerning quantitative preciseness and tissue autofluorescence of multicolor staining when using formalin-fixed, paraffin-embedded (FFPE) tissue specimen. In recent years, milestones in tissue preparation, fluorescent dyes, hardware imaging, and software analysis were achieved including automated tissue segmentation (e.g., tumor vs. stroma) as well as in cellular and subcellular multiparameter analysis.

This chapter covers the role that MSI plays in anatomic pathology for the analysis of FFPE tissue sections, discusses the technical aspects of MSI, and provides a review of its application in the characterization of immune cell infiltrates and beyond regarding its prognostic and predictive value and its use for guidance of clinical decisions for immunotherapeutic strategies.

Key words

Fluorescence microscopy Multispectral imaging Immune cells Phenotyping 

Notes

Acknowledgments

Claudia Wickenhauser, Daniel Bethmann, Zipei Feng, and Shawn M. Jensen contributed equally to this work.

References

  1. 1.
    Engels B, Engelhard VH, Sidney J et al (2013) Relapse or eradication of cancer is predicted by peptide-major histocompatibility complex affinity. Cancer Cell 23(4):516–526CrossRefGoogle Scholar
  2. 2.
    Gajewski TF, Schreiber H, Fu Y-X (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022CrossRefGoogle Scholar
  3. 3.
    Becht E, de Reyniès A, Giraldo NA et al (2016) Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin Cancer Res 22(12):4057–4066CrossRefGoogle Scholar
  4. 4.
    Pages F, Berger A, Camus M et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353(14):2654–2666CrossRefGoogle Scholar
  5. 5.
    Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(11):1960–1964CrossRefGoogle Scholar
  6. 6.
    Mlecnik B, Tosolini M, Kirilovsky A et al (2011) Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol 29(7):610–618CrossRefGoogle Scholar
  7. 7.
    Galon J, Pagès F, Marincola FM et al (2012) Cancer classification using the immunoscore: a worldwide task force. J Transl Med 10:205.  https://doi.org/10.1186/s12967-017-1310-9CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Abel EJ, Bauman TM, Weiker M et al (2014) Analysis and validation of tissue biomarkers for renal cell carcinoma using automated high-throughput evaluation of protein expression. Hum Pathol 45(5):1092–1099CrossRefGoogle Scholar
  9. 9.
    van Zwieten A (2013) Tissue microarray technology and findings for diagnostic immunohistochemistry. Pathology 45(1):71–79CrossRefGoogle Scholar
  10. 10.
    Gorris MAJ, Halilovic A, Rabold K et al (2018) Eight-color multiplex immunohistochemistry for simultaneous detection of multiple immune checkpoint molecules within the tumor microenvironment. J Immunol 200(17):347–354CrossRefGoogle Scholar
  11. 11.
    Lichtman JW, Conchello JA (2005) Fluorescence microscopy. Nat Methods 2(12):910–919CrossRefGoogle Scholar
  12. 12.
    Toth ZE, Mezey E (2007) Simultaneous visualization of multiple antigens with tyramide signal amplification using antibodies from the same species. J Histochem Cytochem 55(6):545–554CrossRefGoogle Scholar
  13. 13.
    Stack EC, Wang C, Roman KA et al (2014) Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70(1):46–58CrossRefGoogle Scholar
  14. 14.
    Mezheyeuski A, Bergsland CH, Backman M et al (2018) Multispectral imaging for quantitative and compartment-specific immune infiltrates reveals distinct immune profiles that classify lung cancer patients. J Pathol 244(4):421–431.  https://doi.org/10.1002/path.5026CrossRefPubMedGoogle Scholar
  15. 15.
    Ying L, Yan F, Meng Q et al (2017) Understanding immune phenotypes in human gastric disease tissues by multiplexed immunohistochemistry. J Transl Med 15:206–210.  https://doi.org/10.1186/s12967-017-1311-8CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Feng Z, Shawn M, Jensen SM et al (2016) Multispectral Imaging of T and B Cells in Murine Spleen and Tumor. J Immunol 198(4):3943–3950CrossRefGoogle Scholar
  17. 17.
    Ng SSM, Nagy BA, Jensen SM et al (2017) Heterodimeric IL15 treatment enhances tumor infiltration, persistence, and effector functions of adoptively transferred tumor-specific T cells in the absence of lymphodepletion. Clin Cancer Res 23(17):2817–2830CrossRefGoogle Scholar
  18. 18.
    Feng Z, Puri S, Moudgil T et al (2015) Multispectral imaging of formalin-fixed tissue predicts ability to generate tumor-infiltrating lymphocytes from melanoma. J Immunother Cancer 3:47.  https://doi.org/10.1186/s40425-015-0091-zCrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Feng Z, Bethmann D, Kappler M et al (2017) Multiparametric immune profiling in HPV- oral squamous cell cancer. JCI Insight 2(14):1–17CrossRefGoogle Scholar
  20. 20.
    Yang L, Liu Z, Tan J et al (2018) Multispectral imaging reveals hyper active TGF-β signaling in colorectal cancer. Cancer Biol Ther 19(2):105–112CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Claudia Wickenhauser
    • 1
  • Daniel Bethmann
    • 1
  • Zipei Feng
    • 2
  • Shawn M. Jensen
    • 2
  • Carmen Ballesteros-Merino
    • 2
  • Chiara Massa
    • 3
  • Andre Steven
    • 3
  • Marcus Bauer
    • 1
  • Peter Kaatzsch
    • 1
  • Nikolaos Pazaitis
    • 1
  • Georgiana Toma
    • 3
  • Carlo B. Bifulco
    • 2
  • Bernard A. Fox
    • 2
    • 4
  • Barbara Seliger
    • 3
    Email author
  1. 1.Medical Faculty, Institute of PathologyMartin Luther University Halle-WittenbergHalle (Saale)Germany
  2. 2.Robert W. Franz Cancer Center, Earle A. Chiles Research InstituteProvidence Portland Medical CenterPortlandUSA
  3. 3.Institute of Medical ImmunologyMartin Luther University Halle-WittenbergHalle (Saale)Germany
  4. 4.Department of Molecular Microbiology and ImmunologyOregon Health and Science UniversityPortlandUSA

Personalised recommendations