Advertisement

Expansion and Determination of Antigen-Reactive T Cells by Flow Cytometry

  • Alexander Martens
  • Graham Pawelec
  • Christopher Shipp
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1913)

Abstract

The detection of antigen-reactive T cells has shown great utility for patient clinical monitoring. However, many of the methods commonly used to detect these cells face major limitations, like the predetermination of the given HLA type. The herein described protocol provides a means of overcoming many of the obstacles associated with the use of multimers and other common approaches in this field. In order to be able to detect rare cells which are below the detection limit of direct ex vivo measurement, in the present protocol, antigen-reactive T cells are first expanded in vitro using libraries of overlapping peptides which span the entire protein of interest and consist of 15 amino acid-long peptides that share a 12-amino-acid overlap. This theoretically allows the detection of T cells to any epitope within a protein of interest and consequently does not require the patient’s HLA type to be characterized. Furthermore, this method simultaneously detects CD4+ and CD8+ T cells that produce cytokines upon encounter with antigen and thereby provides a functional insight into the behavior of the responding T cells. In our case, we have investigated the pro- or anti-inflammatory cytokines IL-2, IL-5, IL-10, IL-17, TNF-α, and IFN-γ.

Key words

Antigen-reactive T cells Overlapping peptides Tumor-associated antigen Intracellular cytokine staining Clinical monitoring Flow cytometry 

References

  1. 1.
    Martens A, Wistuba-Hamprecht K, Geukes Foppen M, Yuan J, Postow MA, Wong P, Romano E, Khammari A, Dreno B, Capone M, Ascierto PA, Di Giacomo AM, Maio M, Schilling B, Sucker A, Schadendorf D, Hassel JC, Eigentler TK, Martus P, Wolchok JD, Blank C, Pawelec G, Garbe C, Weide B (2016) Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab. Clin Cancer Res 22(12):2908–2918.  https://doi.org/10.1158/1078-0432.CCR-15-2412CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Huang A, Zhang B, Wang B, Zhang F, Fan KX, Guo YJ (2013) Increased CD14(+)HLA-DR (-/low) myeloid-derived suppressor cells correlate with extrathoracic metastasis and poor response to chemotherapy in non-small cell lung cancer patients. Cancer Immunol Immunother 62(9):1439–1451.  https://doi.org/10.1007/s00262-013-1450-6CrossRefPubMedGoogle Scholar
  3. 3.
    Santegoets SJ, Stam AG, Lougheed SM, Gall H, Jooss K, Sacks N, Hege K, Lowy I, Scheper RJ, Gerritsen WR, van den Eertwegh AJ, de Gruijl TD (2014) Myeloid derived suppressor and dendritic cell subsets are related to clinical outcome in prostate cancer patients treated with prostate GVAX and ipilimumab. J Immunother Cancer 2:31.  https://doi.org/10.1186/s40425-014-0031-3CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, Staehler M, Brugger W, Dietrich PY, Mendrzyk R, Hilf N, Schoor O, Fritsche J, Mahr A, Maurer D, Vass V, Trautwein C, Lewandrowski P, Flohr C, Pohla H, Stanczak JJ, Bronte V, Mandruzzato S, Biedermann T, Pawelec G, Derhovanessian E, Yamagishi H, Miki T, Hongo F, Takaha N, Hirakawa K, Tanaka H, Stevanovic S, Frisch J, Mayer-Mokler A, Kirner A, Rammensee HG, Reinhardt C, Singh-Jasuja H (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18(8):1254–1261.  https://doi.org/10.1038/nm.2883CrossRefPubMedGoogle Scholar
  5. 5.
    Shipp C, Speigl L, Janssen N, Martens A, Pawelec G (2016) A clinical and biological perspective of human myeloid-derived suppressor cells in cancer. Cell Mol Life Sci 73(21):4043–4061.  https://doi.org/10.1007/s00018-016-2278-yCrossRefPubMedGoogle Scholar
  6. 6.
    Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, Bukur V, Tadmor AD, Luxemburger U, Schrors B, Omokoko T, Vormehr M, Albrecht C, Paruzynski A, Kuhn AN, Buck J, Heesch S, Schreeb KH, Muller F, Ortseifer I, Vogler I, Godehardt E, Attig S, Rae R, Breitkreuz A, Tolliver C, Suchan M, Martic G, Hohberger A, Sorn P, Diekmann J, Ciesla J, Waksmann O, Bruck AK, Witt M, Zillgen M, Rothermel A, Kasemann B, Langer D, Bolte S, Diken M, Kreiter S, Nemecek R, Gebhardt C, Grabbe S, Holler C, Utikal J, Huber C, Loquai C, Tureci O (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547(7662):222–226.  https://doi.org/10.1038/nature23003CrossRefPubMedGoogle Scholar
  7. 7.
    Weide B, Zelba H, Derhovanessian E, Pflugfelder A, Eigentler TK, Di Giacomo AM, Maio M, Aarntzen EH, de Vries IJ, Sucker A, Schadendorf D, Buttner P, Garbe C, Pawelec G (2012) Functional T cells targeting NY-ESO-1 or Melan-A are predictive for survival of patients with distant melanoma metastasis. J Clin Oncol 30(15):1835–1841.  https://doi.org/10.1200/JCO.2011.40.2271CrossRefPubMedGoogle Scholar
  8. 8.
    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128.  https://doi.org/10.1126/science.aaa1348CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bacher P, Scheffold A (2013) Flow-cytometric analysis of rare antigen-specific T cells. Cytometry A 83(8):692–701.  https://doi.org/10.1002/cyto.a.22317CrossRefPubMedGoogle Scholar
  10. 10.
    Bailur JK, Gueckel B, Derhovanessian E, Pawelec G (2015) Presence of circulating Her2-reactive CD8 + T-cells is associated with lower frequencies of myeloid-derived suppressor cells and regulatory T cells, and better survival in older breast cancer patients. Breast Cancer Res 17:34.  https://doi.org/10.1186/s13058-015-0541-zCrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Weide B, Martens A, Zelba H, Stutz C, Derhovanessian E, Di Giacomo AM, Maio M, Sucker A, Schilling B, Schadendorf D, Buttner P, Garbe C, Pawelec G (2014) Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T cells. Clin Cancer Res 20(6):1601–1609.  https://doi.org/10.1158/1078-0432.CCR-13-2508CrossRefPubMedGoogle Scholar
  12. 12.
    Janssen N, Fortis SP, Speigl L, Haritos C, Sotiriadou NN, Sofopoulos M, Arnogiannaki N, Stavropoulos-Giokas C, Dinou A, Perez S, Pawelec G, Baxevanis CN, Shipp C (2017) Peripheral T cell responses to tumour antigens are associated with molecular, immunogenetic and cellular features of breast cancer patients. Breast Cancer Res Treat 161(1):51–62.  https://doi.org/10.1007/s10549-016-4037-zCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alexander Martens
    • 1
  • Graham Pawelec
    • 2
    • 3
  • Christopher Shipp
    • 2
  1. 1.Department of DermatologyUniversity Medical Center TübingenTübingenGermany
  2. 2.Department of Internal Medicine IIUniversity Medical CenterTübingenGermany
  3. 3.Health Sciences North Research Institute of CanadaSudburyCanada

Personalised recommendations