Application of Deep Mutational Scanning in Hepatitis C Virus

  • Nicholas C. WuEmail author
  • Hangfei Qi
Part of the Methods in Molecular Biology book series (MIMB, volume 1911)


Mutagenesis is one of the key techniques in virus research. The recent development of deep mutational scanning allows the assessment of replication fitness effects of a large number of viral mutants in a high-throughput manner. Here, we describe a protocol for studying hepatitis C virus (HCV) using deep mutational scanning, which includes the methodologies for mutant library construction, passaging, sequencing, and data analysis.

Key words

HCV Deep mutational scanning Mutagenesis Next-generation sequencing Viral fitness 



NCW was supported by the Croucher Foundation Fellowship.


  1. 1.
    Qi H, Wu NC, Du Y, Wu TT, Sun R (2015) High-resolution genetic profile of viral genomes: why it matters. Curr Opin Virol 14:62–70CrossRefGoogle Scholar
  2. 2.
    Fowler DM, Fields S (2014) Deep mutational scanning: a new style of protein science. Nat Methods 11:801–807CrossRefGoogle Scholar
  3. 3.
    Arumugaswami V, Remenyi R, Kanagavel V, Sue EY, Ngoc Ho T, Liu C et al (2008) High-resolution functional profiling of hepatitis C virus genome. PLoS Pathog 4:e1000182CrossRefGoogle Scholar
  4. 4.
    Remenyi R, Qi H, Su SY, Chen Z, Wu NC, Arumugaswami V et al (2014) A comprehensive functional map of the hepatitis C virus genome provides a resource for probing viral proteins. MBio 5:e01469–e01414CrossRefGoogle Scholar
  5. 5.
    Qi H, Chu V, Wu NC, Chen Z, Truong S, Brar G et al (2017) Systematic identification of anti-interferon function on hepatitis C virus genome reveals p7 as an immune evasion protein. Proc Natl Acad Sci U S A 114:2018–2023CrossRefGoogle Scholar
  6. 6.
    Wu NC, Young AP, Al-Mawsawi LQ, Olson CA, Feng J, Qi H et al (2014) High-throughput profiling of influenza A virus hemagglutinin gene at single-nucleotide resolution. Sci Rep 4:4942CrossRefGoogle Scholar
  7. 7.
    Wu NC, Olson CA, Du Y, Le S, Tran K, Remenyi R et al (2015) Functional constraint profiling of a viral protein reveals discordance of evolutionary conservation and functionality. PLoS Genet 11:e1005310CrossRefGoogle Scholar
  8. 8.
    Qi H, Olson CA, Wu NC, Ke R, Loverdo C, Chu V et al (2014) A quantitative high-resolution genetic profile rapidly identifies sequence determinants of hepatitis C viral fitness and drug sensitivity. PLoS Pathog 10:e1004064CrossRefGoogle Scholar
  9. 9.
    Olson CA, Wu NC, Sun R (2014) A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain. Curr Biol 24:2643–2651CrossRefGoogle Scholar
  10. 10.
    Wu NC, Grande G, Turner HL, Ward AB, Xie J, Lerner RA et al (2017) In vitro evolution of an influenza broadly neutralizing antibody is modulated by hemagglutinin receptor specificity. Nat Commun 8:15371CrossRefGoogle Scholar
  11. 11.
    Doud MB, Bloom JD (2016) Accurate measurement of the effects of all amino-acid mutations on influenza hemagglutinin. Viruses 8:E155CrossRefGoogle Scholar
  12. 12.
    Al-Mawsawi LQ, Wu NC, Olson CA, Shi VC, Qi H, Zheng X et al (2014) High-throughput profiling of point mutations across the HIV-1 genome. Retrovirology 11:124CrossRefGoogle Scholar
  13. 13.
    Haddox HK, Dingens AS, Bloom JD (2016) Experimental estimation of the effects of all amino-acid mutations to HIV's envelope protein on viral replication in cell culture. PLoS Pathog 12:e1006114CrossRefGoogle Scholar
  14. 14.
    Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, Liu CC et al (2005) Complete replication of hepatitis C virus in cell culture. Science 309:623–626CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaUSA
  2. 2.Department of Molecular and Medical PharmacologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations