Identification of Cancer Driver Genes from a Custom Set of Next Generation Sequencing Data

  • Shu-Hsuan Liu
  • Wei-Chung Cheng
Part of the Methods in Molecular Biology book series (MIMB, volume 1907)


Next generation sequencing (NGS) has become the norm of cancer genomic researches. Large-scale cancer sequencing projects seek to comprehensively uncover mutated genes that confer a selective advantage for cancer cells. Numerous computational algorithms have been developed to find genes that drive cancer based on their patterns of mutation in a patient cohort. It has been noted that the distinct features of driver gene alterations in different subgroups are based on clinical characteristics. Previously, we have developed a database, DriverDB, to integrate all public cancer sequencing data and to identify cancer driver genes according to bioinformatics tools. In this chapter, we describe the use of the function “Meta-Analysis” in DriverDB that offers a list of clinical characteristics to define samples and provides a high degree of freedom for researchers to utilize the huge amounts of sequencing data. Moreover, researchers can use the “Gene” section to explore a single driver gene in all cancers by different kinds of aspects after identifying the specific driver genes by “Meta-Analysis.” DriverDB is available at

Key words

Next generation sequencing Cancer Driver genes Subgroups Mutations 



This research is supported by the Ministry of Science and Technology of Taiwan (105-2320-B-039-006-, 106-2221-E-039-011-MY3); China Medical University (CMU 105-N-06, CMU 106-AWARD-01, CMU 106-N-05).


  1. 1.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558. Scholar
  2. 2.
    Shyr D, Liu Q (2013) Next generation sequencing in cancer research and clinical application. Biol Proced Online 15(1):4. Scholar
  3. 3.
    Chen J, Sun M, Shen B (2015) Deciphering oncogenic drivers: from single genes to integrated pathways. Brief Bioinform 16:413–428. Scholar
  4. 4.
    Chung IF, Chen CY, Su SC, Li CY, Wu KJ, Wang HW, Cheng WC (2016) DriverDBv2: a database for human cancer driver gene research. Nucleic Acids Res 44(D1):D975–D979. Scholar
  5. 5.
    Cheng WC, Chung IF, Chen CY, Sun HJ, Fen JJ, Tang WC, Chang TY, Wong TT, Wang HW (2014) DriverDB: an exome sequencing database for cancer driver gene identification. Nucleic Acids Res 42(Database issue):D1048–D1054. Scholar
  6. 6.
    Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, Kiezun A, Hammerman PS, McKenna A, Drier Y, Zou L, Ramos AH, Pugh TJ, Stransky N, Helman E, Kim J, Sougnez C, Ambrogio L, Nickerson E, Shefler E, Cortes ML, Auclair D, Saksena G, Voet D, Noble M, DiCara D, Lin P, Lichtenstein L, Heiman DI, Fennell T, Imielinski M, Hernandez B, Hodis E, Baca S, Dulak AM, Lohr J, Landau DA, Wu CJ, Melendez-Zajgla J, Hidalgo-Miranda A, Koren A, McCarroll SA, Mora J, Lee RS, Crompton B, Onofrio R, Parkin M, Winckler W, Ardlie K, Gabriel SB, Roberts CW, Biegel JA, Stegmaier K, Bass AJ, Garraway LA, Meyerson M, Golub TR, Gordenin DA, Sunyaev S, Lander ES, Getz G (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218. Scholar
  7. 7.
    Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, Koboldt DC, Mooney TB, Callaway MB, Dooling D, Mardis ER, Wilson RK, Ding L (2012) MuSiC: identifying mutational significance in cancer genomes. Genome Res 22(8):1589–1598. Scholar
  8. 8.
    Youn A, Simon R (2011) Identifying cancer driver genes in tumor genome sequencing studies. Bioinformatics 27(2):175–181. Scholar
  9. 9.
    Gonzalez-Perez A, Lopez-Bigas N (2012) Functional impact bias reveals cancer drivers. Nucleic Acids Res 40(21):e169. Scholar
  10. 10.
    Reimand J, Bader GD (2013) Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers. Mol Syst Biol 9:637. Scholar
  11. 11.
    Ciriello G, Cerami E, Sander C, Schultz N (2012) Mutual exclusivity analysis identifies oncogenic network modules. Genome Res 22(2):398–406. Scholar
  12. 12.
    Zhao J, Zhang S, Wu LY, Zhang XS (2012) Efficient methods for identifying mutated driver pathways in cancer. Bioinformatics 28(22):2940–2947. Scholar
  13. 13.
    Vandin F, Upfal E, Raphael BJ (2012) De novo discovery of mutated driver pathways in cancer. Genome Res 22(2):375–385. Scholar
  14. 14.
    Cerami E, Demir E, Schultz N, Taylor BS, Sander C (2010) Automated network analysis identifies core pathways in glioblastoma. PLoS One 5(2):e8918. Scholar
  15. 15.
    Bashashati A, Haffari G, Ding J, Ha G, Lui K, Rosner J, Huntsman DG, Caldas C, Aparicio SA, Shah SP (2012) DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer. Genome Biol 13(12):R124. Scholar
  16. 16.
    Hou JP, Ma J (2014) DawnRank: discovering personalized driver genes in cancer. Genome Med 6(7):56. Scholar
  17. 17.
    Zhang J, Wu LY, Zhang XS, Zhang S (2014) Discovery of co-occurring driver pathways in cancer. BMC Bioinformatics 15(1):271. Scholar
  18. 18.
    Jia P, Wang Q, Chen Q, Hutchinson KE, Pao W, Zhao Z (2014) MSEA: detection and quantification of mutation hotspots through mutation set enrichment analysis. Genome Biol 15(10):489. Scholar
  19. 19.
    Porta-Pardo E, Godzik A (2014) e-Driver: a novel method to identify protein regions driving cancer. Bioinformatics 30(21):3109–3114. Scholar
  20. 20.
    Tamborero D, Gonzalez-Perez A, Lopez-Bigas N (2013) OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics 29(18):2238–2244. Scholar
  21. 21.
    Ryslik GA, Cheng Y, Cheung KH, Modis Y, Zhao H (2013) Utilizing protein structure to identify non-random somatic mutations. BMC Bioinformatics 14:190. Scholar
  22. 22.
    Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40(Database issue):D109–D114. Scholar
  23. 23.
    Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G, Jassal B, Jupe S, Kalatskaya I, Mahajan S, May B, Ndegwa N, Schmidt E, Shamovsky V, Yung C, Birney E, Hermjakob H, D'Eustachio P, Stein L (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39(Database issue):D691–D697. Scholar
  24. 24.
    Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH (2009) PID: the pathway interaction database. Nucleic Acids Res 37(Database issue):D674–D679. Scholar
  25. 25.
    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. Scholar
  26. 26.
    Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD (2010) Cytoscape Web: an interactive web-based network browser. Bioinformatics 26(18):2347–2348. Scholar
  27. 27.
    Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O'Donnell L, Reguly T, Breitkreutz A, Sellam A, Chen D, Chang C, Rust J, Livstone M, Oughtred R, Dolinski K, Tyers M (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41(Database issue):D816–D823. Scholar
  28. 28.
    Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez RC, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40(Database issue):D841–D846. Scholar
  29. 29.
    Razick S, Magklaras G, Donaldson IM (2008) iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics 9:405. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shu-Hsuan Liu
    • 1
  • Wei-Chung Cheng
    • 1
    • 2
    • 3
  1. 1.Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
  2. 2.Research Center for Tumour Medical ScienceChina Medical UniversityTaichungTaiwan
  3. 3.Drug Development CenterChina Medical UniversityTaichungTaiwan

Personalised recommendations