Advertisement

Analysis for the Heterogeneity of Liver Progenitor Cells

  • Kenji Kamimoto
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1905)

Abstract

Recent technological advances have revealed the heterogeneity of cells and tissues. Existence of heterogeneity in hepatic progenitor cells is becoming apparent by various experimental approaches, and here we describe a series of techniques to investigate the proliferative heterogeneity of these cells. We have developed a new technique by combining genetic lineage tracking and three-dimensional imaging methods. The data obtained can be used in statistical analysis to quantitatively investigate the mechanisms underlying the heterogeneity of hepatic progenitor cells.

Key words

Heterogeneity Cell proliferation Three-dimensional imaging Microscopy Genealogy tracking Quantitative analysis 

References

  1. 1.
    Donati G, Watt FM (2015) Stem cell heterogeneity and plasticity in epithelia. Cell Stem Cell 16:465–476.  https://doi.org/10.1016/j.stem.2015.04.014CrossRefGoogle Scholar
  2. 2.
    Etzrodt M, Endele M, Schroeder T (2014) Quantitative single-cell approaches to stem cell research. Cell Stem Cell 15:546–558.  https://doi.org/10.1016/j.stem.2014.10.015CrossRefGoogle Scholar
  3. 3.
    Miyajima A, Tanaka M, Itoh T (2014) Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 14:561–574.  https://doi.org/10.1016/j.stem.2014.04.010CrossRefGoogle Scholar
  4. 4.
    Jelnes P, Santoni-Rugiu E, Rasmussen M et al (2007) Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell-mediated liver regeneration. Hepatology 45:1462–1470.  https://doi.org/10.1002/hep.21569CrossRefGoogle Scholar
  5. 5.
    Suzuki A, Sekiya S, Onishi M et al (2008) Flow cytometric isolation and clonal identification of self-renewing bipotent hepatic progenitor cells in adult mouse liver. Hepatology 48:1964–1978.  https://doi.org/10.1002/hep.22558CrossRefGoogle Scholar
  6. 6.
    Okabe M, Tsukahara Y, Tanaka M et al (2009) Potential hepatic stem cells reside in EpCAM+ cells of normal and injured mouse liver. Development 136:1951–1960.  https://doi.org/10.1242/dev.031369CrossRefGoogle Scholar
  7. 7.
    Dorrell C, Erker L, Schug J et al (2011) Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes Dev 25:1193–1203.  https://doi.org/10.1101/gad.2029411CrossRefGoogle Scholar
  8. 8.
    Ema H, Morita Y, Yamazaki S et al (2006) Adult mouse hematopoietic stem cells: purification and single-cell assays. Nat Protoc 1:2979–2987.  https://doi.org/10.1038/nprot.2006.447CrossRefGoogle Scholar
  9. 9.
    Kamimoto K, Kaneko K, Kok C et al (2016) Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling. elife 5:e15034.  https://doi.org/10.7554/eLife.15034.001CrossRefGoogle Scholar
  10. 10.
    Lemaigre FP (2015) Determining the fate of hepatic cells by lineage tracing: Facts and pitfalls. Hepatology 61:2100–2103.  https://doi.org/10.1002/hep.27659CrossRefGoogle Scholar
  11. 11.
    Clayton E, Doupé DP, Klein AM et al (2007) A single type of progenitor cell maintains normal epidermis. Nature 446:185–189.  https://doi.org/10.1038/nature05574CrossRefGoogle Scholar
  12. 12.
    Doupé DP, Klein AM, Simons BD, Jones PH (2010) The ordered architecture of murine ear epidermis is maintained by progenitor cells with random fate. Dev Cell 18:317–323.  https://doi.org/10.1016/j.devcel.2009.12.016CrossRefGoogle Scholar
  13. 13.
    Driessens G, Beck B, Caauwe A et al (2012) Defining the mode of tumour growth by clonal analysis. Nature 488:527–530.  https://doi.org/10.1038/nature11344CrossRefGoogle Scholar
  14. 14.
    Ke M-T, Fujimoto S, Imai T (2013) SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci 16:1154–1161.  https://doi.org/10.1038/nn.3447CrossRefGoogle Scholar
  15. 15.
    Zhu L, Gibson P, Currle DS et al (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457:603–607.  https://doi.org/10.1038/nature07589CrossRefGoogle Scholar
  16. 16.
    Madisen L, Zwingman TA, Sunkin SM et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140.  https://doi.org/10.1038/nn.2467CrossRefGoogle Scholar
  17. 17.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Publ Group 9:676–682.  https://doi.org/10.1038/nmeth.2019CrossRefGoogle Scholar
  18. 18.
    Legland D, Arganda-Carreras I, Andrey P (2016) MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32:3532–3534.  https://doi.org/10.1093/bioinformatics/btw413CrossRefGoogle Scholar
  19. 19.
    Forbes SJ, Newsome PN (2016) Liver regeneration - mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol 13:473–485.  https://doi.org/10.1038/nrgastro.2016.97CrossRefGoogle Scholar
  20. 20.
    Hama H, Kurokawa H, Kawano H et al (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14:1481–1488.  https://doi.org/10.1038/nn.2928CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Developmental BiologyWashington University School of Medicine in St. LouisSt. LouisUSA

Personalised recommendations