One-Tube Multicolor Flow Cytometry Assay (OTMA) for Comprehensive Immunophenotyping of Peripheral Blood

  • Anna-Jasmina Donaubauer
  • Paul F. Rühle
  • Ina Becker
  • Rainer Fietkau
  • Udo S. GaiplEmail author
  • Benjamin Frey
Part of the Methods in Molecular Biology book series (MIMB, volume 1904)


Recent improvements in the flow cytometry technology allow the determination of the general immune status through the development of multicolor immunofluorescence panels. The one-tube multicolor flow cytometry assay (OTMA) that is presented here identifies 20 different, clinically relevant immune cell subsets and three common activation markers. Thereby, a comprehensive immune status that covers all major immune cells is easily obtained.

The assay is suitable for every common three lasers and 10 color flow cytometer and includes the application of 15 different antibodies. Furthermore, the assay requires only 100 μL of EDTA-treated whole-blood and less than 40 min for sample preparation. By being easily adaptable to individual requirements and by additionally determining absolute cell counts, the assay is well-suited for translational research in clinical trials.

Key words

Immunophenotyping Multicolor flow cytometry Human whole-blood One-tube measurement Immune status Antibody Gating strategy Absolute cell count 


  1. 1.
    Galon J, Angell HK, Bedognetti D, Marincola FM (2013) The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39(1):11–26. Scholar
  2. 2.
    Chattopadhyay PK, Roederer M (2012) Cytometry: today’s technology and tomorrow’s horizons. Methods 57(3):251–258. Scholar
  3. 3.
    Moreira A, Leisgang W, Schuler G, Heinzerling L (2017) Eosinophilic count as a biomarker for prognosis of melanoma patients and its importance in the response to immunotherapy. Immunotherapy 9(2):115–121. Scholar
  4. 4.
    Bjoern J, Brimnes MK, Andersen MH, Thor Straten P, Svane IM (2011) Changes in peripheral blood level of regulatory T cells in patients with malignant melanoma during treatment with dendritic cell vaccination and low-dose IL-2. Scand J Immunol 73(3):222–233. Scholar
  5. 5.
    Tokuno KH, Shoichi H, Yoshino S, Yoshida S, Oka M (2009) Increased prevalence of regulatory T-cells in the peripheral blood of patients with gastrointestinal cancer. Anticancer Res 29(5):1527–1532PubMedGoogle Scholar
  6. 6.
    Ho CMM, Philip L, Wallace PK, Zhang Y, Fora A, Mellors P, Tario JD, McCarthy BLS, Chen GL, Holstein SA, Balderman SR, Xuefang C, Paiva B, Hahn T (2017) Immune signatures associated with improved progression-free and overall survival for myeloma patients treated with AHSCT. Blood Adv 1(15):1056–1066. Scholar
  7. 7.
    Shirota Y, Yarboro C, Fischer R, Pham TH, Lipsky P, Illei GG (2013) Impact of anti-interleukin-6 receptor blockade on circulating T and B cell subsets in patients with systemic lupus erythematosus. Ann Rheum Dis 72(1):118–128. Scholar
  8. 8.
    Jarry A, Cerf-Bensussan N, Brousse N, Selz F, Guy-Grand D (1990) Subsets of CD3+ (T cell receptor alp or y/6) and CD3-lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. Eur J Immunol 20(5):1097–1103. Scholar
  9. 9.
    Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19:275–290. Scholar
  10. 10.
    Pan T, Zhou T, Li L, Liu Z, Chen Y, Mao E, Li M, Qu H, Liu J (2017) Monocyte programmed death ligand-1 expression is an early marker for predicting infectious complications in acute pancreatitis. Crit Care 21(1):186. Scholar
  11. 11.
    Knudsen JH, Court-payen M, Kjærsgaard E, Christensen NJ (2009) Lymphocyte subset composition in peripheral blood from normal subjects may be influenced by both spleen size and plasma norepinephrine. Scand J Clin Lab Invest 55(7):643–648. Scholar
  12. 12.
    Cheadle WG, Pemberton RM, Robinson D, Livingston DH, Rodriguez JL, Polk HC Jr (1993) Lymphocyte subset responses to trauma and sepsis. J Trauma 35(6):844–849CrossRefGoogle Scholar
  13. 13.
    Monserrat J, de Pablo R, Diaz-Martin D, Rodriguez-Zapata M, de la Hera A, Prieto A, Alvarez-Mon M (2013) Early alterations of B cells in patients with septic shock. Crit Care 17(3):R105. Scholar
  14. 14.
    O’Doherty U, Peng M, Gezelter S, Swiggard WJ, Betjes M, Bhardwaj N, Steinman RM (1994) Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 82(3):487–493PubMedPubMedCentralGoogle Scholar
  15. 15.
    Chirumbolo S, Bjorklund G, Vella A (2017) Using a CD45dim/CD123bright/HLA-DRneg phenotyping protocol to gate basophils in FC for airway allergy. CD123 does not decrease. Adv Respir Med 85(4):193–201. Scholar
  16. 16.
    Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas de St Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203(7):1701–1711. Scholar
  17. 17.
    Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, Solomon M, Selby W, Alexander SI, Nanan R, Kelleher A, Fazekas de St Groth B (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 203(7):1693–1700. Scholar
  18. 18.
    Al Omar SY, Marshall E, Middleton D, Christmas SE (2012) Increased numbers but functional defects of CD56+CD3+ cells in lung cancer. Int Immunol 24(7):409–415. Scholar
  19. 19.
    Bjorkstrom NK, Gonzalez VD, Malmberg KJ, Falconer K, Alaeus A, Nowak G, Jorns C, Ericzon BG, Weiland O, Sandberg JK, Ljunggren HG (2008) Elevated numbers of Fc RIIIA+ (CD16+) effector CD8 T cells with NK cell-like function in chronic hepatitis C virus infection. J Immunol 181(6):4219–4228. Scholar
  20. 20.
    Michel JJ, Turesson C, Lemster B, Atkins SR, Iclozan C, Bongartz T, Wasko MC, Matteson EL, Vallejo AN (2007) CD56-expressing T cells that have features of senescence are expanded in rheumatoid arthritis. Arthritis Rheum 56(1):43–57. Scholar
  21. 21.
    Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, Segura E, Tussiwand R, Yona S (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14(8):571–578. Scholar
  22. 22.
    Montaldo E, Del Zotto G, Della Chiesa M, Mingari MC, Moretta A, De Maria A, Moretta L (2013) Human NK cell receptors/markers: a tool to analyze NK cell development, subsets and function. Cytometry A 83(8):702–713. Scholar
  23. 23.
    Robinson SP, Patterson S, English N, Davies D, Knight SC, Reid CD (1999) Human peripheral blood contains two distinct lineages of dendritic cells. Eur J Immunol 29(9):2769–2778.<2769::AID-IMMU2769>3.0.CO;2-2CrossRefPubMedGoogle Scholar
  24. 24.
    Hong HS, Eberhard JM, Keudel P, Bollmann BA, Ahmad F, Ballmaier M, Bhatnagar N, Zielinska-Skowronek M, Schmidt RE, Meyer-Olson D (2010) Phenotypically and functionally distinct subsets contribute to the expansion of CD56-/CD16+ natural killer cells in HIV infection. AIDS 24(12):1823–1834. Scholar
  25. 25.
    Quandt D, Rothe K, Scholz R, Baerwald CW, Wagner U (2014) Peripheral CD4CD8 double positive T cells with a distinct helper cytokine profile are increased in rheumatoid arthritis. PLoS One 9(3):e93293. Scholar
  26. 26.
    Crispín JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE, Kyttaris VC, Juang YT, Tsokos GC (2008) Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol 181(12):8761–8766CrossRefGoogle Scholar
  27. 27.
    Trautmann A, Rückert B, Schmid-Grendelmeier P, Niederer E, Bröcker EB, Blaser K, Akdis CA (2003) Human CD8 T cells of the peripheral blood contain a low CD8 expressing cytotoxic/effector subpopulation. Immunology 108(3):305–312CrossRefGoogle Scholar
  28. 28.
    Thomas R, Lipsky PE (1994) Human peripheral blood dendritic cell subsets. Isolation and characterization of precursor and mature antigen-presenting cells. J Immunol 153(9):4016–4028PubMedGoogle Scholar
  29. 29.
    Holmannova D, Kolackova M, Kunes P, Krejsek J, Mandak J, Andrys C (2016) Impact of cardiac surgery on the expression of CD40, CD80, CD86 and HLA-DR on B cells and monocytes. Perfusion 31(5):391–400. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anna-Jasmina Donaubauer
    • 1
  • Paul F. Rühle
    • 1
  • Ina Becker
    • 1
  • Rainer Fietkau
    • 1
  • Udo S. Gaipl
    • 1
    Email author
  • Benjamin Frey
    • 1
  1. 1.Department of Radiation OncologyUniversitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations