Advertisement

An Efficient Method to Generate Monoclonal Antibodies from Human B Cells

  • Jenna J. Guthmiller
  • Haley L. Dugan
  • Karlynn E. Neu
  • Linda Yu-Ling Lan
  • Patrick C. WilsonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1904)

Abstract

In the age of personalized medicine, an efficient method to generate monoclonal antibodies (mAbs) is essential for biomedical and immunotherapeutic research. Numerous aspects of basic B-cell biology can be studied at the monoclonal level, including B-cell development, antibody responses to infection or vaccination, and autoimmune responses. Single-cell B-cell receptor cloning allows for the rapid generation of antigen-specific mAbs in a matter of several weeks. In this chapter, we provide an efficient method to generate mAbs from peripheral blood plasmablasts and memory B cells induced by infection and vaccination. Additionally, we provide a protocol on how to optimize single-cell B-cell sorting for both single-cell B-cell receptor cloning and single-cell RNA-sequencing, for the application of studying B-cell specificity and function (spec-seq). This protocol can be easily adapted for other B-cell populations, B cells in tissues, and B cells from other organisms.

Key words

Monoclonal antibody B-cell receptor Plasmablast Memory B-cell Cloning Single-cell RNA-sequencing Spec-seq Humoral immunity Vaccination Infection 

Notes

Acknowledgments

The authors would like to thank Anna-Karin Palm, Nai-Ying Zheng, and Min Huang for critical feedback on the manuscript. This work was funded in parts from the National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health grant numbers U19AI082724, U19AI109946, U19AI057266, and the NIAID Centers of Excellence for Influenza Research and Surveillance (CEIRS), HHSN272201400005C.

References

  1. 1.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454.  https://doi.org/10.1056/NEJMoa1200690CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman PA, Swain SM, Pisansky TM, Fehrenbacher L, Kutteh LA, Vogel VG, Visscher DW, Yothers G, Jenkins RB, Brown AM, Dakhil SR, Mamounas EP, Lingle WL, Klein PM, Ingle JN, Wolmark N (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353(16):1673–1684.  https://doi.org/10.1056/NEJMoa052122CrossRefPubMedGoogle Scholar
  3. 3.
    Ahmed AR, Spigelman Z, Cavacini LA, Posner MR (2006) Treatment of pemphigus vulgaris with rituximab and intravenous immune globulin. N Engl J Med 355(17):1772–1779.  https://doi.org/10.1056/NEJMoa062930CrossRefGoogle Scholar
  4. 4.
    Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA, Teoh LA, Fischkoff SA, Chartash EK (2003) Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum 48(1):35–45.  https://doi.org/10.1002/art.10697CrossRefPubMedGoogle Scholar
  5. 5.
    Vincenti F, Kirkman R, Light S, Bumgardner G, Pescovitz M, Halloran P, Neylan J, Wilkinson A, Ekberg H, Gaston R, Backman L, Burdick J (1998) Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Engl J Med 338(3):161–165.  https://doi.org/10.1056/NEJM199801153380304CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, Stroes ES, Langslet G, Raal FJ, El Shahawy M, Koren MJ, Lepor NE, Lorenzato C, Pordy R, Chaudhari U, Kastelein JJ, Investigators OLT (2015) Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med 372(16):1489–1499.  https://doi.org/10.1056/NEJMoa1501031CrossRefPubMedGoogle Scholar
  7. 7.
    Chen YQ, Wohlbold TJ, Zheng NY, Huang M, Huang Y, Neu KE, Lee J, Wan H, Rojas KT, Kirkpatrick E, Henry C, Palm AE, Stamper CT, Lan LY, Topham DJ, Treanor J, Wrammert J, Ahmed R, Eichelberger MC, Georgiou G, Krammer F, Wilson PC (2018) Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies. Cell 173(2):417–429 e410.  https://doi.org/10.1016/j.cell.2018.03.030CrossRefPubMedGoogle Scholar
  8. 8.
    Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL, Wrin T, Simek MD, Fling S, Mitcham JL, Lehrman JK, Priddy FH, Olsen OA, Frey SM, Hammond PW, Protocol GPI, Kaminsky S, Zamb T, Moyle M, Koff WC, Poignard P, Burton DR (2009) Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326(5950):285–289.  https://doi.org/10.1126/science.1178746CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR, Seaman MS, Zhou T, Schmidt SD, Wu L, Xu L, Longo NS, McKee K, O’Dell S, Louder MK, Wycuff DL, Feng Y, Nason M, Doria-Rose N, Connors M, Kwong PD, Roederer M, Wyatt RT, Nabel GJ, Mascola JR (2010) Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329(5993):856–861.  https://doi.org/10.1126/science.1187659CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shriver Z, Trevejo JM, Sasisekharan R (2015) Antibody-based strategies to prevent and treat influenza. Front Immunol 6:315.  https://doi.org/10.3389/fimmu.2015.00315CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    (1998) Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. The IMpact-RSV Study Group. Pediatrics 102(3 Pt 1):531–537Google Scholar
  12. 12.
    Migone TS, Subramanian GM, Zhong J, Healey LM, Corey A, Devalaraja M, Lo L, Ullrich S, Zimmerman J, Chen A, Lewis M, Meister G, Gillum K, Sanford D, Mott J, Bolmer SD (2009) Raxibacumab for the treatment of inhalational anthrax. N Engl J Med 361(2):135–144.  https://doi.org/10.1056/NEJMoa0810603CrossRefGoogle Scholar
  13. 13.
    Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC (2003) Predominant autoantibody production by early human B cell precursors. Science 301(5638):1374–1377.  https://doi.org/10.1126/science.1086907CrossRefPubMedGoogle Scholar
  14. 14.
    Koelsch K, Zheng NY, Zhang Q, Duty A, Helms C, Mathias MD, Jared M, Smith K, Capra JD, Wilson PC (2007) Mature B cells class switched to IgD are autoreactive in healthy individuals. J Clin Invest 117(6):1558–1565.  https://doi.org/10.1172/JCI27628CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Duty JA, Szodoray P, Zheng NY, Koelsch KA, Zhang Q, Swiatkowski M, Mathias M, Garman L, Helms C, Nakken B, Smith K, Farris AD, Wilson PC (2009) Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors. J Exp Med 206(1):139–151.  https://doi.org/10.1084/jem.20080611CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Henry Dunand CJ, Leon PE, Huang M, Choi A, Chromikova V, Ho IY, Tan GS, Cruz J, Hirsh A, Zheng NY, Mullarkey CE, Ennis FA, Terajima M, Treanor JJ, Topham DJ, Subbarao K, Palese P, Krammer F, Wilson PC (2016) Both neutralizing and non-neutralizing human H7N9 influenza vaccine-induced monoclonal antibodies confer protection. Cell Host Microbe 19(6):800–813.  https://doi.org/10.1016/j.chom.2016.05.014CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tiller T, Tsuiji M, Yurasov S, Velinzon K, Nussenzweig MC, Wardemann H (2007) Autoreactivity in human IgG+ memory B cells. Immunity 26(2):205–213.  https://doi.org/10.1016/j.immuni.2007.01.009CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Andrews SF, Huang Y, Kaur K, Popova LI, Ho IY, Pauli NT, Henry Dunand CJ, Taylor WM, Lim S, Huang M, Qu X, Lee JH, Salgado-Ferrer M, Krammer F, Palese P, Wrammert J, Ahmed R, Wilson PC (2015) Immune history profoundly affects broadly protective B cell responses to influenza. Sci Transl Med 7(316):316ra192.  https://doi.org/10.1126/scitranslmed.aad0522CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Andrews SF, Zhang Q, Lim S, Li L, Lee JH, Zheng NY, Huang M, Taylor WM, Farris AD, Ni D, Meng W, Luning Prak ET, Wilson PC (2013) Global analysis of B cell selection using an immunoglobulin light chain-mediated model of autoreactivity. J Exp Med 210(1):125–142.  https://doi.org/10.1084/jem.20120525CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Di Niro R, Mesin L, Zheng NY, Stamnaes J, Morrissey M, Lee JH, Huang M, Iversen R, du Pre MF, Qiao SW, Lundin KE, Wilson PC, Sollid LM (2012) High abundance of plasma cells secreting transglutaminase 2-specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions. Nat Med 18(3):441–445.  https://doi.org/10.1038/nm.2656CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497CrossRefGoogle Scholar
  22. 22.
    Wrammert J, Koutsonanos D, Li GM, Edupuganti S, Sui J, Morrissey M, McCausland M, Skountzou I, Hornig M, Lipkin WI, Mehta A, Razavi B, Del Rio C, Zheng NY, Lee JH, Huang M, Ali Z, Kaur K, Andrews S, Amara RR, Wang Y, Das SR, O’Donnell CD, Yewdell JW, Subbarao K, Marasco WA, Mulligan MJ, Compans R, Ahmed R, Wilson PC (2011) Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med 208(1):181–193.  https://doi.org/10.1084/jem.20101352CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lau D, Lan LY, Andrews SF, Henry C, Rojas KT, Neu KE, Huang M, Huang Y, DeKosky B, Palm AE, Ippolito GC, Georgiou G, Wilson PC (2017) Low CD21 expression defines a population of recent germinal center graduates primed for plasma cell differentiation. Sci Immunol 2(7).  https://doi.org/10.1126/sciimmunol.aai8153
  24. 24.
    Bunker JJ, Erickson SA, Flynn TM, Henry C, Koval JC, Meisel M, Jabri B, Antonopoulos DA, Wilson PC, Bendelac A (2017) Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358(6361).  https://doi.org/10.1126/science.aan6619
  25. 25.
    Walker LM, Bowley DR, Burton DR (2009) Efficient recovery of high-affinity antibodies from a single-chain Fab yeast display library. J Mol Biol 389(2):365–375.  https://doi.org/10.1016/j.jmb.2009.04.019CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hammers CM, Stanley JR (2014) Antibody phage display: technique and applications. J Invest Dermatol 134(2):1–5.  https://doi.org/10.1038/jid.2013.521CrossRefPubMedGoogle Scholar
  27. 27.
    Smith K, Garman L, Wrammert J, Zheng NY, Capra JD, Ahmed R, Wilson PC (2009) Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat Protoc 4(3):372–384.  https://doi.org/10.1038/nprot.2009.3CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wrammert J, Smith K, Miller J, Langley WA, Kokko K, Larsen C, Zheng NY, Mays I, Garman L, Helms C, James J, Air GM, Capra JD, Ahmed R, Wilson PC (2008) Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453(7195):667–671.  https://doi.org/10.1038/nature06890CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ho IY, Bunker JJ, Erickson SA, Neu KE, Huang M, Cortese M, Pulendran B, Wilson PC (2016) Refined protocol for generating monoclonal antibodies from single human and murine B cells. J Immunol Methods 438:67–70.  https://doi.org/10.1016/j.jim.2016.09.001CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345.  https://doi.org/10.1038/nmeth.1318CrossRefGoogle Scholar
  31. 31.
    Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9(1):171–181.  https://doi.org/10.1038/nprot.2014.006CrossRefPubMedGoogle Scholar
  32. 32.
    Canzar S, Neu KE, Tang Q, Wilson PC, Khan AA (2017) BASIC: BCR assembly from single cells. Bioinformatics 33(3):425–427.  https://doi.org/10.1093/bioinformatics/btw631CrossRefPubMedGoogle Scholar
  33. 33.
    Eltahla AA, Rizzetto S, Pirozyan MR, Betz-Stablein BD, Venturi V, Kedzierska K, Lloyd AR, Bull RA, Luciani F (2016) Linking the T cell receptor to the single cell transcriptome in antigen-specific human T cells. Immunol Cell Biol 94(6):604–611.  https://doi.org/10.1038/icb.2016.16CrossRefPubMedGoogle Scholar
  34. 34.
    Stubbington MJT, Lonnberg T, Proserpio V, Clare S, Speak AO, Dougan G, Teichmann SA (2016) T cell fate and clonality inference from single-cell transcriptomes. Nat Methods 13(4):329–332.  https://doi.org/10.1038/nmeth.3800CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Upadhyay AA, Kauffman RC, Wolabaugh AN, Cho A, Patel NB, Reiss SM, Havenar-Daughton C, Dawoud RA, Tharp GK, Sanz I, Pulendran B, Crotty S, Lee FE, Wrammert J, Bosinger SE (2018) BALDR: a computational pipeline for paired heavy and light chain immunoglobulin reconstruction in single-cell RNA-seq data. Genome Med 10(1):20.  https://doi.org/10.1186/s13073-018-0528-3CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049.  https://doi.org/10.1038/ncomms14049CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Patil VS, Madrigal A, Schmiedel BJ, Clarke J, O’Rourke P, de Silva AD, Harris E, Peters B, Seumois G, Weiskopf D, Sette A, Vijayanand P (2018) Precursors of human CD4(+) cytotoxic T lymphocytes identified by single-cell transcriptome analysis. Sci Immunol 3(19).  https://doi.org/10.1126/sciimmunol.aan8664
  38. 38.
    Zemmour D, Zilionis R, Kiner E, Klein AM, Mathis D, Benoist C (2018) Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat Immunol 19(3):291–301.  https://doi.org/10.1038/s41590-018-0051-0CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Andrews SF, Kaur K, Pauli NT, Huang M, Huang Y, Wilson PC (2015) High preexisting serological antibody levels correlate with diversification of the influenza vaccine response. J Virol 89(6):3308–3317.  https://doi.org/10.1128/JVI.02871-14CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ellebedy AH, Jackson KJ, Kissick HT, Nakaya HI, Davis CW, Roskin KM, McElroy AK, Oshansky CM, Elbein R, Thomas S, Lyon GM, Spiropoulou CF, Mehta AK, Thomas PG, Boyd SD, Ahmed R (2016) Defining antigen-specific plasmablast and memory B cell subsets in human blood after viral infection or vaccination. Nat Immunol 17(10):1226–1234.  https://doi.org/10.1038/ni.3533CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274(5284):94–96CrossRefGoogle Scholar
  42. 42.
    Nair N, Buti L, Faenzi E, Buricchi F, Nuti S, Sammicheli C, Tavarini S, Popp MW, Ploegh H, Berti F, Pizza M, Castellino F, Finco O, Rappuoli R, Del Giudice G, Galli G, Bardelli M (2013) Optimized fluorescent labeling to identify memory B cells specific for Neisseria meningitidis serogroup B vaccine antigens ex vivo. Immun Inflamm Dis 1(1):3–13.  https://doi.org/10.1002/iid3.3CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jenna J. Guthmiller
    • 1
  • Haley L. Dugan
    • 2
  • Karlynn E. Neu
    • 1
    • 2
  • Linda Yu-Ling Lan
    • 2
  • Patrick C. Wilson
    • 1
    • 2
    Email author
  1. 1.Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and ImmunologyUniversity of ChicagoChicagoUSA
  2. 2.Committee on ImmunologyUniversity of ChicagoChicagoUSA

Personalised recommendations