IgM Natural Autoantibodies in Physiology and the Treatment of Disease

  • Mahboobeh Fereidan-Esfahani
  • Tarek Nayfeh
  • Arthur WarringtonEmail author
  • Charles L. HoweEmail author
  • Moses Rodriguez
Part of the Methods in Molecular Biology book series (MIMB, volume 1904)


Antibodies are vital components of the adaptive immune system for the recognition and response to foreign antigens. However, some antibodies recognize self-antigens in healthy individuals. These autoreactive antibodies may modulate innate immune functions. IgM natural autoantibodies (IgM-NAAs) are a class of primarily polyreactive immunoglobulins encoded by germline V-gene segments which exhibit low affinity but broad specificity to both foreign and self-antigens. Historically, these autoantibodies were closely associated with autoimmune disease. Nevertheless, not all human autoantibodies are pathogenic and compelling evidence indicates that IgM-NAAs may exert a spectrum of effects from injurious to protective depending upon cellular and molecular context. In this chapter, we review the current state of knowledge regarding the potential physiological and therapeutic roles of IgM-NAAs in different disease conditions such as atherosclerosis, cancer, and autoimmune disease. We also describe the discovery of two reparative IgM-NAAs by our laboratory and delineate their proposed mechanisms of action in central nervous system (CNS) disease.

Key words

IgM Natural Autoantibody Physiology Atherosclerosis Cancer Central nervous system Multiple sclerosis Remyelination Oligodendrocyte B-1a 



M.F.S. is supported by grant from the National MS Society (NMSS).


  1. 1.
    Walport MJ (2001) Complement. First of two parts. N Engl J Med 344(14):1058–1066PubMedCrossRefGoogle Scholar
  2. 2.
    Toapanta FR, Ross TM (2006) Complement-mediated activation of the adaptive immune responses: role of C3d in linking the innate and adaptive immunity. Immunol Res 36(1–3):197–210PubMedCrossRefGoogle Scholar
  3. 3.
    Aggarwal A (2014) Role of autoantibody testing. Best Pract Res Clin Rheumatol 28(6):907–920PubMedCrossRefGoogle Scholar
  4. 4.
    Zaichik A, Churilov LP, Utekhin VJ (2008) Autoimmune regulation of genetically determined cell functions in health and disease. Pathophysiology 15(3):191–207PubMedCrossRefGoogle Scholar
  5. 5.
    Piro A, Tagarelli A, Tagarelli G et al (2008) Paul Ehrlich: the Nobel Prize in physiology or medicine 1908. Int Rev Immunol 27(1–2):1–17PubMedCrossRefGoogle Scholar
  6. 6.
    Haury M, Sundblad A, Grandien A et al (1997) The repertoire of serum IgM in normal mice is largely independent of external antigenic contact. Eur J Immunol 27(6):1557–1563PubMedCrossRefGoogle Scholar
  7. 7.
    Boes M (2000) Role of natural and immune IgM antibodies in immune responses. Mol Immunol 37(18):1141–1149PubMedCrossRefGoogle Scholar
  8. 8.
    Meffre E, Salmon JE (2007) Autoantibody selection and production in early human life. J Clin Invest 117(3):598–601PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Merbl Y, Zucker-Toledano M, Quintana FJ, Cohen IR (2007) Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J Clin Invest 117(3):712–718PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Elkon K, Casali P (2008) Nature and functions of autoantibodies. Nat Clin Pract Rheumatol 4(9):491–498PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kaveri SV, Silverman GJ, Bayry J (2012) Natural IgM in immune equilibrium and harnessing their therapeutic potential. J Immunol 188(3):939–945PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Carroll MC (1998) The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol 16:545–568PubMedCrossRefGoogle Scholar
  13. 13.
    Sakamoto N, Shibuya K, Shimizu Y et al (2001) A novel Fc receptor for IgA and IgM is expressed on both hematopoietic and non-hematopoietic tissues. Eur J Immunol 31(5):1310–1316PubMedCrossRefGoogle Scholar
  14. 14.
    Shibuya A, Sakamoto N, Shimizu Y et al (2000) Fc alpha/mu receptor mediates endocytosis of IgM-coated microbes. Nat Immunol 1(5):441–446PubMedCrossRefGoogle Scholar
  15. 15.
    Kaetzel CS (2005) The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol Rev 206:83–99CrossRefGoogle Scholar
  16. 16.
    Johansen FE, Pekna M, Norderhaug IN et al (1999) Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J Exp Med 190(7):915–922PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kubagawa H, Carroll MC, Jacob CO et al (2015) Nomenclature of Toso, Fas apoptosis inhibitory molecule 3, and IgM FcR. J Immunol 194(9):4055–4057PubMedCrossRefGoogle Scholar
  18. 18.
    Kubagawa H, Kubagawa Y, Jones D et al (2014) The old but new IgM Fc receptor (FcmuR). Curr Top Microbiol Immunol 382:3–28PubMedGoogle Scholar
  19. 19.
    Kubagawa H, Oka S, Kubagawa Y et al (2009) Identity of the elusive IgM Fc receptor (FcmuR) in humans. J Exp Med 206(12):2779–2793PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Shima H, Takatsu H, Fukuda S et al (2010) Identification of TOSO/FAIM3 as an Fc receptor for IgM. Int Immunol 22(3):149–156PubMedCrossRefGoogle Scholar
  21. 21.
    Berland R, Wortis HH (2002) Origins and functions of B-1 cells with notes on the role of CD5. Annu Rev Immunol 20:253–300PubMedCrossRefGoogle Scholar
  22. 22.
    Peaker CJ, Neuberger MS (1993) Association of CD22 with the B cell antigen receptor. Eur J Immunol 23(6):1358–1363PubMedCrossRefGoogle Scholar
  23. 23.
    Muller J, Nitschke L (2014) The role of CD22 and Siglec-G in B-cell tolerance and autoimmune disease. Nat Rev Rheumatol 10(7):422–428PubMedCrossRefGoogle Scholar
  24. 24.
    O'Keefe TL, Williams GT, Davies SL et al (1996) Hyperresponsive B cells in CD22-deficient mice. Science 274(5288):798–801PubMedCrossRefGoogle Scholar
  25. 25.
    Jellusova J, Nitschke L (2011) Regulation of B cell functions by the sialic acid-binding receptors siglec-G and CD22. Front Immunol 2:96PubMedGoogle Scholar
  26. 26.
    Hardy RR, Hayakawa K (2001) B cell development pathways. Annu Rev Immunol 19:595–621PubMedCrossRefGoogle Scholar
  27. 27.
    LeBien TW, Tedder TF (2008) B lymphocytes: how they develop and function. Blood 112(5):1570–1580PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Herzenberg LA, Herzenberg LA (1989) Toward a layered immune system. Cell 59(6):953–954PubMedCrossRefGoogle Scholar
  29. 29.
    Chung JB, Silverman M, Monroe JG (2003) Transitional B cells: step by step towards immune competence. Trends Immunol 24(6):343–349PubMedCrossRefGoogle Scholar
  30. 30.
    Deenen GJ, Kroese FG (1993) Kinetics of peritoneal B-1a cells (CD5 B cells) in young adult mice. Eur J Immunol 23(1):12–16PubMedCrossRefGoogle Scholar
  31. 31.
    Kantor AB, Stall AM, Adams S et al (1992) Adoptive transfer of murine B-cell lineages. Ann N Y Acad Sci 651:168–169PubMedCrossRefGoogle Scholar
  32. 32.
    Kantor AB, Stall AM, Adams S et al (1992) Differential development of progenitor activity for three B-cell lineages. Proc Natl Acad Sci U S A 89(8):3320–3324PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Tung JW, Mrazek MD, Yang Y et al (2006) Phenotypically distinct B cell development pathways map to the three B cell lineages in the mouse. Proc Natl Acad Sci U S A 103(16):6293–6298PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Herzenberg LA, Stall AM, Lalor PA et al (1986) The Ly-1 B cell lineage. Immunol Rev 93:81–102PubMedCrossRefGoogle Scholar
  35. 35.
    Hayakawa K, Hardy RR, Parks DR et al (1983) The “Ly-1 B” cell subpopulation in normal immunodefective, and autoimmune mice. J Exp Med 157(1):202–218PubMedCrossRefGoogle Scholar
  36. 36.
    Ghosn EE, Yamamoto R, Hamanaka S et al (2012) Distinct B-cell lineage commitment distinguishes adult bone marrow hematopoietic stem cells. Proc Natl Acad Sci U S A 109(14):5394–5398PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Martin F, Oliver AM, Kearney JF (2001) Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14(5):617–629PubMedCrossRefGoogle Scholar
  38. 38.
    Choi YS, Baumgarth N (2008) Dual role for B-1a cells in immunity to influenza virus infection. J Exp Med 205(13):3053–3064PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Griffin DO, Holodick NE, Rothstein TL (2011) Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J Exp Med 208(1):67–80PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Wong SC, Chew WK, Tan JE et al (2002) Peritoneal CD5+ B-1 cells have signaling properties similar to tolerant B cells. J Biol Chem 277(34):30707–30715PubMedCrossRefGoogle Scholar
  41. 41.
    Hayakawa K, Hardy RR, Stall AM et al (1986) Immunoglobulin-bearing B cells reconstitute and maintain the murine Ly-1 B cell lineage. Eur J Immunol 16(10):1313–1316PubMedCrossRefGoogle Scholar
  42. 42.
    Boes M, Esau C, Fischer MB et al (1998) Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J Immunol 160(10):4776–4787PubMedGoogle Scholar
  43. 43.
    Nguyen TT, Elsner RA, Baumgarth N (2015) Natural IgM prevents autoimmunity by enforcing B cell central tolerance induction. J Immunol 194(4):1489–1502PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Freitas AA, Viale AC, Sundblad A et al (1991) Normal serum immunoglobulins participate in the selection of peripheral B-cell repertoires. Proc Natl Acad Sci U S A 88(13):5640–5644PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kearney JF, Patel P, Stefanov EK et al (2015) Natural antibody repertoires: development and functional role in inhibiting allergic airway disease. Annu Rev Immunol 33:475–504PubMedCrossRefGoogle Scholar
  46. 46.
    Patel PS, Kearney JF (2015) Neonatal exposure to pneumococcal phosphorylcholine modulates the development of house dust mite allergy during adult life. J Immunol 194(12):5838–5850PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Vollmers HP, Brandlein S (2009) Natural antibodies and cancer. New Biotechnol 25(5):294–298CrossRefGoogle Scholar
  48. 48.
    Madi A, Bransburg-Zabary S, Maayan-Metzger A, Dar G, Ben-Jacob E, Cohen IR (2015) Tumor-associated and disease-associated autoantibody repertoires in healthy colostrum and maternal and newborn cord sera. J Immunol 194(11):5272–5281PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Heyman B (2000) Regulation of antibody responses via antibodies, complement, and Fc receptors. Annu Rev Immunol 18:709–737PubMedCrossRefGoogle Scholar
  50. 50.
    Heyman B, Pilstrom L, Shulman MJ (1988) Complement activation is required for IgM-mediated enhancement of the antibody response. J Exp Med 167(6):1999–2004PubMedCrossRefGoogle Scholar
  51. 51.
    Ochsenbein AF, Fehr T, Lutz C et al (1999) Control of early viral and bacterial distribution and disease by natural antibodies. Science 286(5447):2156–2159PubMedCrossRefGoogle Scholar
  52. 52.
    Zhou ZH, Zhang Y, Hu YF et al (2007) The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe 1(1):51–61PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Stager S, Alexander J, Kirby AC, Botto M, Rooijen NV, Smith DF et al (2003) Natural antibodies and complement are endogenous adjuvants for vaccine-induced CD8+ T-cell responses. Nat Med 9(10):1287–1292PubMedCrossRefGoogle Scholar
  54. 54.
    Kohler H, Bayry J, Nicoletti A et al (2003) Natural autoantibodies as tools to predict the outcome of immune response? Scand J Immunol 58(3):285–289PubMedCrossRefGoogle Scholar
  55. 55.
    Jayasekera JP, Moseman EA, Carroll MC (2007) Natural antibody and complement mediate neutralization of influenza virus in the absence of prior immunity. J Virol 81(7):3487–3494PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Rapaka RR, Ricks DM, Alcorn JF et al (2010) Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina. J Exp Med 207(13):2907–2919PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Fernandez Gonzalez S, Jayasekera JP, Carroll MC (2008) Complement and natural antibody are required in the long-term memory response to influenza virus. Vaccine 26(Suppl 8):I86–I93PubMedCrossRefGoogle Scholar
  58. 58.
    Henson PM (2017) Cell removal: efferocytosis. Annu Rev Cell Dev Biol 33:127–144PubMedCrossRefGoogle Scholar
  59. 59.
    Manderson AP, Botto M, Walport MJ (2004) The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol 22:431–456PubMedCrossRefGoogle Scholar
  60. 60.
    Ansel KM, Harris RB, Cyster JG (2002) CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 16(1):67–76PubMedCrossRefGoogle Scholar
  61. 61.
    Tanabe S, Yamashita T (2018) B-1a lymphocytes promote oligodendrogenesis during brain development. Nat Neurosci 21(4):506–516PubMedCrossRefGoogle Scholar
  62. 62.
    Hosseini H, Li Y, Kanellakis P et al (2015) Phosphatidylserine liposomes mimic apoptotic cells to attenuate atherosclerosis by expanding polyreactive IgM producing B1a lymphocytes. Cardiovasc Res 106(3):443–452PubMedCrossRefGoogle Scholar
  63. 63.
    Binder CJ, Horkko S, Dewan A et al (2003) Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 9(6):736–743PubMedCrossRefGoogle Scholar
  64. 64.
    Hörkkö S, Bird DA, Miller E et al (1999) Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid–protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest 103(1):117–128PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Binder CJ, Hörkkö S, Dewan A et al (2003) Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 9:736PubMedCrossRefGoogle Scholar
  66. 66.
    Thorp E, Cui D, Schrijvers DM et al (2008) Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of Apoe−/− mice. Arterioscler Thromb Vasc Biol 28(8):1421–1428PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Chang MK, Bergmark C, Laurila A et al (1999) Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition. Proc Natl Acad Sci U S A 96(11):6353–6358PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Suthers B, Hansbro P, Thambar S et al (2012) Pneumococcal vaccination may induce anti-oxidized low-density lipoprotein antibodies that have potentially protective effects against cardiovascular disease. Vaccine 30(27):3983–3985PubMedCrossRefGoogle Scholar
  69. 69.
    Grönwall C, Vas J, Silverman G (2012) Protective roles of natural IgM antibodies. Front Immunol 3:66PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Tsiantoulas D, Perkmann T, Afonyushkin T et al (2015) Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J Lipid Res 56(2):440–448PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Brändlein S, Pohle T, Ruoff N et al (2003) Natural IgM antibodies and immunosurveillance mechanisms against epithelial cancer cells in humans. Cancer Res 63(22):7995–8005PubMedGoogle Scholar
  72. 72.
    Brandlein S, Pohle T, Vollmers C et al (2004) CFR-1 receptor as target for tumor-specific apoptosis induced by the natural human monoclonal antibody PAM-1. Oncol Rep 11(4):777–784PubMedGoogle Scholar
  73. 73.
    Brandlein S, Rauschert N, Rasche L et al (2007) The human IgM antibody SAM-6 induces tumor-specific apoptosis with oxidized low-density lipoprotein. Mol Cancer Ther 6(1):326–333PubMedCrossRefGoogle Scholar
  74. 74.
    Hensel F, Hermann R, Schubert C et al (1999) Characterization of glycosylphosphatidylinositol-linked molecule CD55/decay-accelerating factor as the receptor for antibody SC-1-induced apoptosis. Cancer Res 59(20):5299–5306PubMedGoogle Scholar
  75. 75.
    Hermann R, Hensel F, Muller EC et al (2001) Deactivation of regulatory proteins hnRNP A1 and A2 during SC-1 induced apoptosis. Hum Antibodies 10(2):83–90PubMedCrossRefGoogle Scholar
  76. 76.
    Varambally S, Bar-Dayan Y, Bayry J et al (2004) Natural human polyreactive IgM induce apoptosis of lymphoid cell lines and human peripheral blood mononuclear cells. Int Immunol 16(3):517–524PubMedCrossRefGoogle Scholar
  77. 77.
    Brandlein S, Lorenz J, Ruoff N et al (2002) Human monoclonal IgM antibodies with apoptotic activity isolated from cancer patients. Hum Antibodies 11(4):107–119PubMedCrossRefGoogle Scholar
  78. 78.
    Daeron M (1997) Fc receptor biology. Annu Rev Immunol 15:203–234PubMedCrossRefGoogle Scholar
  79. 79.
    Ravetch JV, Clynes RA (1998) Divergent roles for Fc receptors and complement in vivo. Annu Rev Immunol 16:421–432PubMedCrossRefGoogle Scholar
  80. 80.
    Schwartz-Albiez R (2012) Naturally occurring antibodies directed against carbohydrate tumor antigens. In: Lutz HU (ed) Naturally occurring antibodies (NAbs). Springer, New York, NY, pp 27–43CrossRefGoogle Scholar
  81. 81.
    Erttmann R (2008) Treatment of neuroblastoma with human natural antibodies. Autoimmun Rev 7(6):496–500PubMedCrossRefGoogle Scholar
  82. 82.
    Ollert MW, David K, Schmitt C, Hauenschild A et al (1996) Normal human serum contains a natural IgM antibody cytotoxic for human neuroblastoma cells. Proc Natl Acad Sci U S A 93(9):4498–4503PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    David K, Heiligtag S, Ollert MW et al (2001) Initial characterization of the apoptosis-inducing receptor for natural human anti-neuroblastoma IgM. Med Pediatr Oncol 36(1):251–257PubMedCrossRefGoogle Scholar
  84. 84.
    Larkin JMG, Norsworthy PJ, A'Hern RP et al (2006) Anti-αGal-dependent complement-mediated cytotoxicity in metastatic melanoma. Melanoma Res 16(2):157–163PubMedCrossRefGoogle Scholar
  85. 85.
    Poynton CH, Jackson S, Fegan C et al (1992) Use of IgM enriched intravenous immunoglobulin (pentaglobin) in bone marrow transplantation. Bone Marrow Transplant 9(6):451–457PubMedGoogle Scholar
  86. 86.
    Kreymann KG, de Heer G, Nierhaus A et al (2007) Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit Care Med 35(12):2677–2685PubMedPubMedCentralGoogle Scholar
  87. 87.
    Norrby-Teglund A, Haque KN, Hammarstrom L (2006) Intravenous polyclonal IgM-enriched immunoglobulin therapy in sepsis: a review of clinical efficacy in relation to microbiological aetiology and severity of sepsis. J Intern Med 260(6):509–516PubMedCrossRefGoogle Scholar
  88. 88.
    Haque KN, Zaidi MH, Bahakim H (1988) IgM-enriched intravenous immunoglobulin therapy in neonatal sepsis. Am J Dis Child (1960) 142(12):1293–1296Google Scholar
  89. 89.
    Stehr SN, Knels L, Weissflog C et al (2008) Effects of IGM-enriched solution on polymorphonuclear neutrophil function, bacterial clearance, and lung histology in endotoxemia. Shock (Augusta, GA) 29(2):167–172Google Scholar
  90. 90.
    Rieben R, Roos A, Muizert YT et al (1999) Immunoglobulin M-enriched human intravenous immunoglobulin prevents complement activation in vitro and in vivo in a rat model of acute inflammation. Blood 93(3):942–951PubMedPubMedCentralGoogle Scholar
  91. 91.
    Maddur MS, Vani J, Lacroix-Desmazes S et al (2010) Autoimmunity as a predisposition for infectious diseases. PLoS Pathog 6(11):e1001077PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Marcia MB, Neelima MB, Nelson NHT (1995) Anti-endotoxin human monoclonal antibody A6H4C5 (HA-1A) utilizes the VH4.21 gene. Clin Infect Dis 21:S186–S1S9CrossRefGoogle Scholar
  93. 93.
    Hurez V, Kazatchkine MD, Vassilev T et al (1997) Pooled normal human polyspecific IgM contains neutralizing anti-idiotypes to IgG autoantibodies of autoimmune patients and protects from experimental autoimmune disease. Blood 90(10):4004–4013PubMedGoogle Scholar
  94. 94.
    Vassilev T, Yamamoto M, Aissaoui A et al (1999) Normal human immunoglobulin suppresses experimental myasthenia gravis in SCID mice. Eur J Immunol 29(8):2436–2442PubMedCrossRefGoogle Scholar
  95. 95.
    Vassilev T, Mihaylova N, Voynova E et al (2006) IgM-enriched human intravenous immunoglobulin suppresses T lymphocyte functions in vitro and delays the activation of T lymphocytes in hu-SCID mice. Clin Exp Immunol 145(1):108–115PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Jayne DR, Esnault VL, Lockwood CM (1993) ANCA anti-idiotype antibodies and the treatment of systemic vasculitis with intravenous immunoglobulin. J Autoimmun 6(2):207–219PubMedCrossRefGoogle Scholar
  97. 97.
    Rossi F, Jayne DR, Lockwood CM et al (1991) Anti-idiotypes against anti-neutrophil cytoplasmic antigen autoantibodies in normal human polyspecific IgG for therapeutic use and in the remission sera of patients with systemic vasculitis. Clin Exp Immunol 83(2):298–303PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Yehuda S, Elias T (2005) Protective autoantibodies: role in homeostasis, clinical importance, and therapeutic potential. Arthritis Rheum 52(9):2599–2606CrossRefGoogle Scholar
  99. 99.
    Bolton WK, Schrock JH, Davis JS IV (1982) Rheumatoid factor inhibition of in vitro binding of IgG complexes in the human glomerulus. Arthritis Rheum 25(3):297–303PubMedCrossRefGoogle Scholar
  100. 100.
    Andersson A, Forsgren S, Soderstrom A et al (1991) Monoclonal, natural antibodies prevent development of diabetes in the non-obese diabetic (NOD) mouse. J Autoimmun 4(5):733–742PubMedCrossRefGoogle Scholar
  101. 101.
    Walpen AJ, Laumonier T, Aebi C et al (2004) Immunoglobulin M-enriched intravenous immunoglobulin inhibits classical pathway complement activation, but not bactericidal activity of human serum. Xenotransplantation 11(2):141–148CrossRefGoogle Scholar
  102. 102.
    Lobo PI, Schlegel KH, Bajwa A et al (2015) Natural IgM switches the function of lipopolysaccharide-activated murine bone marrow-derived dendritic cells to a regulatory dendritic cell that suppresses innate inflammation. J Immunol 195(11):5215–5226PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Lobo PI, Bajwa A, Schlegel KH et al (2012) Natural IgM anti-leukocyte autoantibodies attenuate excess inflammation mediated by innate and adaptive immune mechanisms involving Th-17. J Immunol 188(4):1675–1685PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Ehrenstein MR, Notley CA (2010) The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol 10(11):778–786CrossRefGoogle Scholar
  105. 105.
    Bibl M, Esselmann H, Otto M et al (2004) Cerebrospinal fluid amyloid beta peptide patterns in Alzheimer’s disease patients and nondemented controls depend on sample pretreatment: indication of carrier-mediated epitope masking of amyloid beta peptides. Electrophoresis 25(17):2912–2918PubMedCrossRefGoogle Scholar
  106. 106.
    Giacobini E, Becker RE (2007) One hundred years after the discovery of Alzheimer’s disease. A turning point for therapy? J Alzheimers Dis 12(1):37–52PubMedCrossRefGoogle Scholar
  107. 107.
    Bard F, Cannon C, Barbour R et al (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6(8):916–919PubMedCrossRefGoogle Scholar
  108. 108.
    Lambracht-Washington D, Rosenberg RN (2013) Advances in the development of vaccines for Alzheimer’s disease. Discov Med 15(84):319–326PubMedPubMedCentralGoogle Scholar
  109. 109.
    Banks WA, Farr SA, Morley JE et al (2007) Anti-amyloid beta protein antibody passage across the blood-brain barrier in the SAMP8 mouse model of Alzheimer’s disease: an age-related selective uptake with reversal of learning impairment. Exp Neurol 206(2):248–256PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Marcello A, Wirths O, Schneider-Axmann T, Degerman-Gunnarsson M, Lannfelt L, Bayer TA (2011) Reduced levels of IgM autoantibodies against N-truncated pyroglutamate Abeta in plasma of patients with Alzheimer’s disease. Neurobiol Aging 32(8):1379–1387PubMedCrossRefGoogle Scholar
  111. 111.
    Taguchi H, Planque S, Nishiyama Y et al (2008) Autoantibody-catalyzed hydrolysis of amyloid beta peptide. J Biol Chem 283(8):4714–4722PubMedCrossRefGoogle Scholar
  112. 112.
    Lang W, Rodriguez M, Lennon VA et al (1984) Demyelination and remyelination in murine viral encephalomyelitis. Ann N Y Acad Sci 436:98–102PubMedCrossRefGoogle Scholar
  113. 113.
    Traugott U, Stone SH, Raine CS (1982) Chronic relapsing experimental autoimmune encephalomyelitis. treatment with combinations of myelin components promotes clinical and structural recovery. J Neurol Sci 56(1):65–73PubMedCrossRefGoogle Scholar
  114. 114.
    Rodriguez M, Kenny JJ, Thiemann RL et al (1990) Theiler’s virus-induced demyelination in mice immunosuppressed with anti-IgM and in mice expressing the xid gene. Microb Pathog 8(1):23–35PubMedCrossRefGoogle Scholar
  115. 115.
    Rodriguez M, Lennon VA (1990) Immunoglobulins promote remyelination in the central nervous system. Ann Neurol 27(1):12–17PubMedCrossRefGoogle Scholar
  116. 116.
    Rodriguez M (1991) Immunoglobulins stimulate central nervous system remyelination: electron microscopic and morphometric analysis of proliferating cells. Lab Investig 64(3):358–370PubMedGoogle Scholar
  117. 117.
    Rodriguez M, Lennon VA, Benveniste EN et al (1987) Remyelination by oligodendrocytes stimulated by antiserum to spinal cord. J Neuropathol Exp Neurol 46(1):84–95PubMedCrossRefGoogle Scholar
  118. 118.
    Miller DJ, Sanborn KS, Katzmann JA et al (1994) Monoclonal autoantibodies promote central nervous system repair in an animal model of multiple sclerosis. J Neurosci 14(10):6230–6238PubMedCrossRefGoogle Scholar
  119. 119.
    Miller DJ, Bright JJ, Sriram S et al (1997) Successful treatment of established relapsing experimental autoimmune encephalomyelitis in mice with a monoclonal natural autoantibody. J Neuroimmunol 75(1–2):204–209PubMedCrossRefGoogle Scholar
  120. 120.
    Asakura K, Miller DJ, Pease LR et al (1998) Targeting of IgMkappa antibodies to oligodendrocytes promotes CNS remyelination. J Neurosci 18(19):7700–7708PubMedCrossRefGoogle Scholar
  121. 121.
    Warrington AE, Asakura K, Bieber AJ et al (2000) Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc Natl Acad Sci U S A 97(12):6820–6825PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Bieber AJ, Warrington A, Asakura K et al (2002) Human antibodies accelerate the rate of remyelination following lysolecithin-induced demyelination in mice. Glia 37(3):241–249PubMedCrossRefGoogle Scholar
  123. 123.
    Mitsunaga Y, Ciric B, Van Keulen V et al (2002) Direct evidence that a human antibody derived from patient serum can promote myelin repair in a mouse model of chronic-progressive demyelinating disease. FASEB J 16(10):1325–1327PubMedCrossRefGoogle Scholar
  124. 124.
    Wootla B, Denic A, Watzlawik JO et al (2016) Antibody-mediated oligodendrocyte remyelination promotes axon health in progressive demyelinating disease. Mol Neurobiol 53(8):5217–5228PubMedCrossRefGoogle Scholar
  125. 125.
    Ciric B, Van Keulen V, Paz Soldan M, Rodriguez M, Pease LR (2004) Antibody-mediated remyelination operates through mechanism independent of immunomodulation. J Neuroimmunol 146(1–2):153–161PubMedCrossRefGoogle Scholar
  126. 126.
    Mullin AP, Cui C, Wang Y et al (2017) rHIgM22 enhances remyelination in the brain of the cuprizone mouse model of demyelination. Neurobiol Dis 105:142–155PubMedCrossRefGoogle Scholar
  127. 127.
    Wright BR, Warrington AE, Edberg DD et al (2009) Cellular mechanisms of central nervous system repair by natural autoreactive monoclonal antibodies. Arch Neurol 66(12):1456–1459PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Cui C, Wang J, Mullin AP et al (2018) The antibody rHIgM22 facilitates hippocampal remyelination and ameliorates memory deficits in the cuprizone mouse model of demyelination. Brain Res 1694:73–86PubMedCrossRefGoogle Scholar
  129. 129.
    Banks WA, Terrell B, Farr SA et al (2002) Passage of amyloid beta protein antibody across the blood-brain barrier in a mouse model of Alzheimer’s disease. Peptides 23(12):2223–2226PubMedCrossRefGoogle Scholar
  130. 130.
    Pirko I, Ciric B, Gamez J et al (2004) A human antibody that promotes remyelination enters the CNS and decreases lesion load as detected by T2-weighted spinal cord MRI in a virus-induced murine model of MS. FASEB J 18(13):1577–1579PubMedCrossRefGoogle Scholar
  131. 131.
    Warrington AE, Bieber AJ, Ciric B et al (2007) A recombinant human IgM promotes myelin repair after a single, very low dose. J Neurosci Res 85(5):967–976PubMedCrossRefGoogle Scholar
  132. 132.
    Asakura K, Miller DJ, Murray K et al (1996) Monoclonal autoantibody SCH94.03, which promotes central nervous system remyelination, recognizes an antigen on the surface of oligodendrocytes. J Neurosci Res 43(3):273–281PubMedCrossRefGoogle Scholar
  133. 133.
    Howe CL, Bieber AJ, Warrington AE et al (2004) Antiapoptotic signaling by a remyelination-promoting human antimyelin antibody. Neurobiol Dis 15(1):120–131PubMedCrossRefGoogle Scholar
  134. 134.
    Watzlawik J, Holicky E, Edberg DD et al (2010) Human remyelination promoting antibody inhibits apoptotic signaling and differentiation through Lyn kinase in primary rat oligodendrocytes. Glia 58(15):1782–1793PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Wittenberg NJ, Im H, Xu X et al (2012) High-affinity binding of remyelinating natural autoantibodies to myelin-mimicking lipid bilayers revealed by nanohole surface plasmon resonance. Anal Chem 84(14):6031–6039PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Paz Soldan MM, Warrington AE, Bieber AJ et al (2003) Remyelination-promoting antibodies activate distinct Ca2+ influx pathways in astrocytes and oligodendrocytes: relationship to the mechanism of myelin repair. Mol Cell Neurosci 22(1):14–24PubMedCrossRefGoogle Scholar
  137. 137.
    Watzlawik JO, Warrington AE, Rodriguez M (2013) PDGF is required for remyelination-promoting IgM stimulation of oligodendrocyte progenitor cell proliferation. PLoS One 8(2):e55149PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Vana AC, Flint NC, Harwood NE et al (2007) Platelet-derived growth factor promotes repair of chronically demyelinated white matter. J Neuropathol Exp Neurol 66(11):975–988PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Colognato H, Baron W, Avellana-Adalid V et al (2002) CNS integrins switch growth factor signalling to promote target-dependent survival. Nat Cell Biol 4(11):833–841PubMedCrossRefGoogle Scholar
  140. 140.
    Frost EE, Buttery PC, Milner R et al (1999) Integrins mediate a neuronal survival signal for oligodendrocytes. Curr Biol 9(21):1251–1254PubMedCrossRefGoogle Scholar
  141. 141.
    Baron W, Shattil SJ, Ffrench-Constant C (2002) The oligodendrocyte precursor mitogen PDGF stimulates proliferation by activation of alpha(v)beta3 integrins. EMBO J 21(8):1957–1966PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Howe CL, Mayoral S, Rodriguez M (2006) Activated microglia stimulate transcriptional changes in primary oligodendrocytes via IL-1beta. Neurobiol Dis 23(3):731–739PubMedCrossRefGoogle Scholar
  143. 143.
    Zorina Y, Stricker J, Caggiano AO et al (2018) Human IgM antibody rHIgM22 promotes phagocytic clearance of myelin debris by microglia. Sci Rep 8(1):9392PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Xu X, Warrington AE, Wright BR et al (2011) A human IgM signals axon outgrowth: coupling lipid raft to microtubules. J Neurochem 119(1):100–112PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Xu X, Wittenberg NJ, Jordan LR et al (2013) A patterned recombinant human IgM guides neurite outgrowth of CNS neurons. Sci Rep 3:2267PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Denic A, Bieber A, Warrington A et al (2009) Brainstem 1H nuclear magnetic resonance (NMR) spectroscopy: marker of demyelination and repair in spinal cord. Ann Neurol 66(4):559–564PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Wootla B, Denic A, Watzlawik JO et al (2015) A single dose of a neuron-binding human monoclonal antibody improves brainstem NAA concentrations, a biomarker for density of spinal cord axons, in a model of progressive multiple sclerosis. J Neuroinflammation 12:83PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Xu X, Denic A, Jordan LR et al (2015) A natural human IgM that binds to gangliosides is therapeutic in murine models of amyotrophic lateral sclerosis. Dis Model Mech 8(8):831–842PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Ripps ME, Huntley GW, Hof PR et al (1995) Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 92(3):689–693PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Pollerberg EG, Sadoul R, Goridis C et al (1985) Selective expression of the 180-kD component of the neural cell adhesion molecule N-CAM during development. J Cell Biol 101(5 Pt 1):1921–1929PubMedCrossRefGoogle Scholar
  151. 151.
    Kleene R, Mzoughi M, Joshi G et al (2010) NCAM-induced neurite outgrowth depends on binding of calmodulin to NCAM and on nuclear import of NCAM and fak fragments. J Neurosci 30(32):10784–10798PubMedCrossRefGoogle Scholar
  152. 152.
    Giza J, Biederer T (2010) Polysialic acid: a veteran sugar with a new site of action in the brain. Proc Natl Acad Sci U S A 107(23):10335–10336PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Czepiel M, Leicher L, Becker K et al (2014) Overexpression of polysialylated neural cell adhesion molecule improves the migration capacity of induced pluripotent stem cell-derived oligodendrocyte precursors. Stem Cells Transl Med 3(9):1100–1109PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Watzlawik JO, Kahoud RJ, Ng S et al (2015) Polysialic acid as an antigen for monoclonal antibody HIgM12 to treat multiple sclerosis and other neurodegenerative disorders. J Neurochem 134(5):865–878PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Warrington AE, Bieber AJ, Van Keulen V et al (2004) Neuron-binding human monoclonal antibodies support central nervous system neurite extension. J Neuropathol Exp Neurol 63(5):461–473PubMedCrossRefGoogle Scholar
  156. 156.
    Xu X, Denic A, Warrington AE et al (2013) Therapeutics to promote CNS repair: a natural human neuron-binding IgM regulates membrane-raft dynamics and improves motility in a mouse model of multiple sclerosis. J Clin Immunol 33(Suppl 1):S50–S56PubMedCrossRefGoogle Scholar
  157. 157.
    Lopez PH, Schnaar RL (2009) Gangliosides in cell recognition and membrane protein regulation. Curr Opin Struct Biol 19(5):549–557PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Vyas AA, Patel HV, Fromholt SE et al (2002) Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci U S A 99(12):8412–8417PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Sheikh KA, Sun J, Liu Y et al (1999) Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci U S A 96(13):7532–7537PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Nguyen T, Mehta NR, Conant K et al (2009) Axonal protective effects of the myelin-associated glycoprotein. J Neurosci 29(3):630–637PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Montecino-Rodriguez E, Dorshkind K (2012) B-1 B cell development in the fetus and adult. Immunity 36(1):13–21PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Nakahara J, Tan-Takeuchi K, Seiwa C et al (2003) Signaling via immunoglobulin Fc receptors induces oligodendrocyte precursor cell differentiation. Dev Cell 4(6):841–852PubMedCrossRefGoogle Scholar
  163. 163.
    Nielsen JA, Maric D, Lau P et al (2006) Identification of a novel oligodendrocyte cell adhesion protein using gene expression profiling. J Neurosci 26(39):9881–9891PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mahboobeh Fereidan-Esfahani
    • 1
  • Tarek Nayfeh
    • 1
  • Arthur Warrington
    • 1
    Email author
  • Charles L. Howe
    • 1
    Email author
  • Moses Rodriguez
    • 1
  1. 1.Department of NeurologyMayo ClinicRochesterUSA

Personalised recommendations