Advertisement

A High-Throughput Magnetic Nanoparticle-Based Semi-Automated Antibody Phage Display Biopanning

  • Angela Chiew Wen Ch’ng
  • Azimah Ahmad
  • Zoltán Konthur
  • Theam Soon LimEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1904)

Abstract

Panning is a common process used for antibody selection from phage antibody libraries. There are several methods developed for a similar purpose, namely streptavidin mass spectrometry immunoassay (MSIA™) Disposable Automation Research Tips, magnetic beads, polystyrene immunotubes, and microtiter plate. The advantage of using a magnetic particle processor system is the ability to carry out phage display panning against multiple target antigens simultaneously in parallel. The system carries out the panning procedure using magnetic nanoparticles in microtiter plates. The entire incubation, wash, and elution process is then automated in this setup. The system also allows customization for the introduction of different panning stringencies. The nature of the biopanning process coupled with the limitation of the system means that minimal human intervention is required for the infection and phage packaging stage. However, the process still allows for rapid and reproducible antibody generation to be carried out.

Key words

Panning Antibody library Monoclonal antibodies Phage display Semi-automated Magnetic nanoparticles 

Notes

Acknowledgments

The authors would like to acknowledge the support from the Malaysian Ministry of Education under the Higher Institution Centre of Excellence (HICoE) Grant (Grant no. 311/CIPPM/44001005).

References

  1. 1.
    Rami A et al (2017) An overview on application of phage display technique in immunological studies. Asian Pacific J Trop Biomed 7(7):599–602.  https://doi.org/10.1016/j.apjtb.2017.06.001CrossRefGoogle Scholar
  2. 2.
    Frenzel A et al (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 8(7):1177–1194.  https://doi.org/10.1080/19420862.2016.1212149CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hust M, Dübel S (2004) Mating antibody phage display with proteomics. Trends Biotechnol 22(1):8–14.  https://doi.org/10.1016/j.tibtech.2003.10.011CrossRefPubMedGoogle Scholar
  4. 4.
    R Strohl W (2014) Antibody discovery: sourcing of monoclonal antibody variable domains. Curr Drug Discov Technol 11(1):3–19CrossRefGoogle Scholar
  5. 5.
    Zhuang G et al (2001) A kinetic model for a biopanning process considering antigen desorption and effective antigen concentration on a solid phase. J Biosci Bioeng 91(5):474–481.  https://doi.org/10.1016/S1389-1723(01)80276-0CrossRefPubMedGoogle Scholar
  6. 6.
    Rudnick SI et al (2011) Influence of affinity and antigen internalization on the uptake and penetration of anti-HER2 antibodies in solid tumors. Cancer Res 71(6):2250–2259.  https://doi.org/10.1158/0008-5472.can-10-2277CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Giordano RJ et al (2001) Biopanning and rapid analysis of selective interactive ligands. Nat Med 7(11):1249–1253.  https://doi.org/10.1038/nm1101-1249CrossRefPubMedGoogle Scholar
  8. 8.
    Chin CF et al (2016) Application of streptavidin mass spectrometric immunoassay tips for immunoaffinity based antibody phage display panning. J Microbiol Methods 120:6–14.  https://doi.org/10.1016/j.mimet.2015.11.007CrossRefPubMedGoogle Scholar
  9. 9.
    Hakami AR et al (2015) Non-ionic detergents facilitate non-specific binding of M13 bacteriophage to polystyrene surfaces. J Virol Methods 221:1–8.  https://doi.org/10.1016/j.jviromet.2015.04.023CrossRefPubMedGoogle Scholar
  10. 10.
    Elgundi Z et al (2016) The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev 122:2–19.  https://doi.org/10.1016/j.addr.2016.11.004CrossRefPubMedGoogle Scholar
  11. 11.
    Ch’ng ACW et al (2016) Phage display-derived antibodies: application of recombinant antibodies for diagnostics. In: Saxena SK (ed) Proof and concepts in rapid diagnostic tests and technologies. InTech, London, pp 107–135Google Scholar
  12. 12.
    Ch’ng ACW et al (2018) Magnetic nanoparticle-based semi-automated panning for high-throughput antibody selection. In: Hust M, Lim TS (eds) Phage display: methods and protocols. Springer, New York, NY, pp 301–319.  https://doi.org/10.1007/978-1-4939-7447-4_16CrossRefGoogle Scholar
  13. 13.
    Konthur Z et al (2010) Semi-automated magnetic bead-based antibody selection from phage display libraries. In: Kontermann R, Dübel S (eds) Antibody engineering. Springer, Berlin, pp 267–287.  https://doi.org/10.1007/978-3-642-01144-3_18CrossRefGoogle Scholar
  14. 14.
    Jamshaid T et al (2016) Magnetic particles: from preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications. TrAC Trends Anal Chem 79:344–362.  https://doi.org/10.1016/j.trac.2015.10.022CrossRefGoogle Scholar
  15. 15.
    Tayapiwatana C et al (2006) A novel approach using streptavidin magnetic bead-sorted in vivo biotinylated survivin for monoclonal antibody production. J Immunol Methods 317:1):1–1)11.  https://doi.org/10.1016/j.jim.2006.07.024CrossRefPubMedGoogle Scholar
  16. 16.
    Hien TBD et al (2012) Potential application of antibody-mimicking peptides identified by phage display in immuno-magnetic separation of an antigen. J Biotechnol 161(3):213–220.  https://doi.org/10.1016/j.jbiotec.2012.06.039CrossRefPubMedGoogle Scholar
  17. 17.
    Lim BN et al (2014) Principles and application of antibody libraries for infectious diseases. Biotechnol Lett 36(12):2381–2392.  https://doi.org/10.1007/s10529-014-1635-xCrossRefPubMedGoogle Scholar
  18. 18.
    Georgiou G et al (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 32:158–168.  https://doi.org/10.1038/nbt.2782CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Romao E et al (2016) Identification of useful nanobodies by phage display of immune single domain libraries derived from camelid heavy chain antibodies. Curr Pharm Des 22(43):6500–6518CrossRefGoogle Scholar
  20. 20.
    Knappik A et al (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides 1. J Mol Biol 296(1):57–86.  https://doi.org/10.1006/jmbi.1999.3444CrossRefPubMedGoogle Scholar
  21. 21.
    Carmen S, Jermutus L (2002) Concepts in antibody phage display. Brief Funct Genomics 1(2):189–203.  https://doi.org/10.1093/bfgp/1.2.189CrossRefGoogle Scholar
  22. 22.
    Rosenberg AS, Sauna ZE (2017) Immunogenicity assessment during the development of protein therapeutics. J Pharm Pharmacol 70(5):584–594.  https://doi.org/10.1111/jphp.12810CrossRefPubMedGoogle Scholar
  23. 23.
    Fang X et al (2007) Automation of nucleic acid isolation on KingFisher magnetic particle processors. J Assoc Lab Autom 12(4):195–201.  https://doi.org/10.1016/j.jala.2007.05.001CrossRefGoogle Scholar
  24. 24.
    Hanes J et al (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 18:1287–1292.  https://doi.org/10.1038/82407CrossRefPubMedGoogle Scholar
  25. 25.
    Hallborn J, Carlsson R (2002) Automated screening procedure for high-throughput generation of antibody fragments. BioTechniques 33:S30–S37CrossRefGoogle Scholar
  26. 26.
    Schwenk JM et al (2007) Determination of binding specificities in highly multiplexed bead-based assays for antibody proteomics. Mol Cell Proteomics 6(1):125–132.  https://doi.org/10.1074/mcp.T600035-MCP200CrossRefPubMedGoogle Scholar
  27. 27.
    Behrens CR, Liu B (2014) Methods for site-specific drug conjugation to antibodies. MAbs 6(1):46–53.  https://doi.org/10.4161/mabs.26632CrossRefPubMedGoogle Scholar
  28. 28.
    Ta HT et al (2012) Enzymatic antibody tagging: toward a universal biocompatible targeting tool. Trends Cardiovasc Med 22(4):105–111.  https://doi.org/10.1016/j.tcm.2012.07.004CrossRefPubMedGoogle Scholar
  29. 29.
    Liu B et al (2002) Towards proteome-wide production of monoclonal antibody by phage display. J Mol Biol 315(5):1063–1073.  https://doi.org/10.1006/jmbi.2001.5276CrossRefPubMedGoogle Scholar
  30. 30.
    Walter G et al (2001) High-throughput screening of surface displayed gene products. Comb Chem High Throughput Screen 4(2):193–205.  https://doi.org/10.2174/1386207013331228CrossRefPubMedGoogle Scholar
  31. 31.
    Turunen L et al (2009) Automated panning and screening procedure on microplates for antibody generation from phage display libraries. J Biomol Screen 14(3):282–293.  https://doi.org/10.1177/1087057108330113CrossRefPubMedGoogle Scholar
  32. 32.
    Rondot S et al (2001) A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol 19(1):75–78.  https://doi.org/10.1038/83567CrossRefPubMedGoogle Scholar
  33. 33.
    Smeal SW et al (2017) Simulation of the M13 life cycle I: assembly of a genetically-structured deterministic chemical kinetic simulation. Virology 500:259–274.  https://doi.org/10.1016/j.virol.2016.08.017CrossRefPubMedGoogle Scholar
  34. 34.
    Nakano K et al (2017) E. coli mismatch repair enhances AT-to-GC mutagenesis caused by alkylating agents. Mutat Res 815:22–27.  https://doi.org/10.1016/j.mrgentox.2017.02.001CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Angela Chiew Wen Ch’ng
    • 1
  • Azimah Ahmad
    • 1
  • Zoltán Konthur
    • 2
  • Theam Soon Lim
    • 1
    • 3
    Email author
  1. 1.Institute for Research in Molecular MedicineUniversiti Sains MalaysiaPenangMalaysia
  2. 2.Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesPotsdamGermany
  3. 3.Analytical Biochemistry Research CentreUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations