Advertisement

Epitope Mapping via Phage Display from Single-Gene Libraries

  • Viola Fühner
  • Philip Alexander Heine
  • Kilian Johannes Carl Zilkens
  • Doris Meier
  • Kristian Daniel Ralph Roth
  • Gustavo Marçal Schmidt Garcia Moreira
  • Michael HustEmail author
  • Giulio Russo
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1904)

Abstract

Antibodies are widely used in a large variety of research applications, for diagnostics and therapy of numerous diseases, primarily cancer and autoimmune diseases. Antibodies are binding specifically to target structures (antigens). The antigen-binding properties are not only dependent on the antibody sequence, but also on the discrete antigen region recognized by the antibody (epitope). Knowing the epitope is valuable information for the improvement of diagnostic assays or therapeutic antibodies, as well as to understand the immune response of a vaccine. While huge progress has been made in the pipelines for the generation and functional characterization of antibodies, the available technologies for epitope mapping are still lacking effectiveness in terms of time and effort. Also, no technique available offers the absolute guarantee of succeeding. Thus, research to develop and improve epitope mapping techniques is still an active field. Phage display from random peptide libraries or single-gene libraries are currently among the most exploited methods for epitope mapping. The first is based on the generation of mimotopes and it is fastened to the need of high-throughput sequencing and complex bioinformatic analysis. The second provides original epitope sequences without requiring complex analysis or expensive techniques, but depends on further investigation to define the functional amino acids within the epitope. In this book chapter, we describe how to perform epitope mapping by antigen fragment phage display from single-gene antigen libraries and how to construct these types of libraries. Thus, we also provide figures and analysis to demonstrate the actual potential of this technique and to prove the necessity of certain procedural steps.

Key words

Phage display Epitope mapping Antigen fragments Protein fragments Panning 

Notes

Acknowledgments

We thank CNPq for providing the scholarship of GMSGM (process 204693/2014-4). V.F. was funded by the Federal State of Lower Saxony, Niedersächsisches Vorab (VWZN2889/3215/3266). This chapter is a completely revised and updated version of [46].

References

  1. 1.
    Heesters BA, van der Poel CE, Das A, Carroll MC (2016) Antigen presentation to B cells. Trends Immunol.  https://doi.org/10.1016/j.it.2016.10.003
  2. 2.
    Gunn BM, Alter G (2016) Modulating antibody functionality in infectious disease and vaccination. Trends Mol Med.  https://doi.org/10.1016/j.molmed.2016.09.002
  3. 3.
    Soliman C, Yuriev E, Ramsland PA (2016) Antibody recognition of aberrant glycosylation on the surface of cancer cells. Curr Opin Struct Biol 44:1–8.  https://doi.org/10.1016/j.sbi.2016.10.009CrossRefPubMedGoogle Scholar
  4. 4.
    Rock KL, Reits E, Neefjes J (2016) Present yourself! By MHC class I and MHC class II molecules. Trends Immunol.  https://doi.org/10.1016/j.it.2016.08.010
  5. 5.
    Sela-Culang I, Kunik V, Ofran Y (2013) The structural basis of antibody-antigen recognition. Front Immunol 4:302.  https://doi.org/10.3389/fimmu.2013.00302CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kaur H, Salunke DM (2015) Antibody promiscuity: understanding the paradigm shift in antigen recognition. IUBMB Life 67:498–505.  https://doi.org/10.1002/iub.1397CrossRefPubMedGoogle Scholar
  7. 7.
    Kringelum JV, Nielsen M, Padkjær SB, Lund O (2013) Structural analysis of B-cell epitopes in antibody:protein complexes. Mol Immunol 53:24–34.  https://doi.org/10.1016/j.molimm.2012.06.001CrossRefPubMedGoogle Scholar
  8. 8.
    Gupta S, Ansari HR, Gautam A et al (2013) Identification of B-cell epitopes in an antigen for inducing specific class of antibodies. Biol Direct 8:27.  https://doi.org/10.1186/1745-6150-8-27CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Frenzel A, Schirrmann T, Hust M (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 8:1177–1194.  https://doi.org/10.1080/19420862.2016.1212149CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cherryholmes GA, Stanton SE, Disis ML (2015) Current methods of epitope identification for cancer vaccine design. Vaccine 33:7408–7414.  https://doi.org/10.1016/j.vaccine.2015.06.116CrossRefPubMedGoogle Scholar
  11. 11.
    Lanzavecchia A, Frühwirth A, Perez L, Corti D (2016) Antibody-guided vaccine design: identification of protective epitopes. Curr Opin Immunol 41:62–67.  https://doi.org/10.1016/j.coi.2016.06.001CrossRefPubMedGoogle Scholar
  12. 12.
    Aghebati-Maleki L, Bakhshinejad B, Baradaran B et al (2016) Phage display as a promising approach for vaccine development. J Biomed Sci 23:66.  https://doi.org/10.1186/s12929-016-0285-9CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pin E, Henjes F, Hong M-G et al (2016) Identification of a novel autoimmune peptide epitope of prostein in prostate cancer. J Proteome Res.  https://doi.org/10.1021/acs.jproteome.6b00620
  14. 14.
    Miethe S, Rasetti-Escargueil C, Liu Y et al (2014) Development of neutralizing scFv-Fc against botulinum neurotoxin A light chain from a macaque immune library. MAbs 6:446–459.  https://doi.org/10.4161/mabs.27773CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mendonça M, Moreira GMSG, Conceição FR et al (2016) Fructose 1,6-bisphosphate aldolase, a novel immunogenic surface protein on Listeria species. PLoS One 11:e0160544.  https://doi.org/10.1371/journal.pone.0160544CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jiang X, Totrov M, Li W et al (2016) Rationally designed immunogens targeting HIV-1 gp120 V1V2 induce distinct conformation-specific antibody responses in rabbits. J Virol 90(24):11007–11019.  https://doi.org/10.1128/JVI.01409-16CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    He W, Tan GS, Mullarkey CE et al (2016) Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus. Proc Natl Acad Sci 113:11931–11936.  https://doi.org/10.1073/pnas.1609316113CrossRefPubMedGoogle Scholar
  18. 18.
    Benjamin P (1996) Site-directed mutagenesis in epitope mapping. Methods 9:508–515CrossRefGoogle Scholar
  19. 19.
    Davidson E, Doranz BJ (2014) A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes. Immunology 143:13–20.  https://doi.org/10.1111/imm.12323CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Vernet T, Choulier L, Nominé Y et al (2015) Spot peptide arrays and SPR measurements: throughput and quantification in antibody selectivity studies. J Mol Recognit 28:635–644.  https://doi.org/10.1002/jmr.2477CrossRefPubMedGoogle Scholar
  21. 21.
    Wen X, Sun J, Wang X et al (2015) Identification of a novel linear epitope on the NS1 protein of avian influenza virus. BMC Microbiol 15:168.  https://doi.org/10.1186/s12866-015-0507-4CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Augustin T, Cehlar O, Skrabana R et al (2015) Unravelling viral camouflage: approaches to the study and characterization of conformational epitopes. Acta Virol 59:103–116.  https://doi.org/10.4149/av_2015_02_103CrossRefPubMedGoogle Scholar
  23. 23.
    Malito E, Carfi A, Bottomley MJ (2015) Protein crystallography in vaccine research and development. Int J Mol Sci 16:13106–13140.  https://doi.org/10.3390/ijms160613106CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gershoni JM, Roitburd-Berman A, Siman-Tov DD et al (2007) Epitope mapping: the first step in developing epitope-based vaccines. BioDrugs 21:145–156CrossRefGoogle Scholar
  25. 25.
    Gallagher ES, Hudgens JW (2016) Mapping protein-ligand interactions with proteolytic fragmentation, hydrogen/deuterium exchange-mass spectrometry. Methods Enzymol 566:357–404.  https://doi.org/10.1016/bs.mie.2015.08.010CrossRefPubMedGoogle Scholar
  26. 26.
    Prądzińska M, Behrendt I, Astorga-Wells J et al (2016) Application of amide hydrogen/deuterium exchange mass spectrometry for epitope mapping in human cystatin C. Amino Acids.  https://doi.org/10.1007/s00726-016-2316-y
  27. 27.
    Schirrmann T, Meyer T, Schütte M et al (2011) Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules 16:412–426.  https://doi.org/10.3390/molecules16010412CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kuhn P, Fühner V, Unkauf T et al (2016) Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 10:922–948.  https://doi.org/10.1002/prca.201600002CrossRefPubMedGoogle Scholar
  29. 29.
    Hust M, Meysing M, Schirrmann T et al (2006) Enrichment of open reading frames presented on bacteriophage M13 using hyperphage. BioTechniques 41:335–342CrossRefGoogle Scholar
  30. 30.
    Zantow J, Just S, Lagkouvardos I et al (2016) Mining gut microbiome oligopeptides by functional metaproteome display. Sci Rep 6:34337.  https://doi.org/10.1038/srep34337CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wu C-H, Liu I-J, Lu R-M, Wu H-C (2016) Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci 23:8.  https://doi.org/10.1186/s12929-016-0223-xCrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kügler J, Zantow J, Meyer T, Hust M (2013) Oligopeptide m13 phage display in pathogen research. Viruses 5:2531–2545.  https://doi.org/10.3390/v5102531CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kügler J, Wilke S, Meier D et al (2015) Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol 15:10.  https://doi.org/10.1186/s12896-015-0125-0CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lloyd C, Lowe D, Edwards B et al (2009) Modelling the human immune response: performance of a 1011 human antibody repertoire against a broad panel of therapeutically relevant antigens. Protein Eng Des Sel 22:159–168.  https://doi.org/10.1093/protein/gzn058CrossRefPubMedGoogle Scholar
  35. 35.
    Rowley MJ, O’Connor K, Wijeyewickrema L (2004) Phage display for epitope determination: a paradigm for identifying receptor-ligand interactions. Biotechnol Annu Rev 10:151–188.  https://doi.org/10.1016/S1387-2656(04)10006-9CrossRefPubMedGoogle Scholar
  36. 36.
    Ibsen KN, Daugherty PS (2017) Prediction of antibody structural epitopes via random peptide library screening and next generation sequencing. J Immunol Methods 451:28–36.  https://doi.org/10.1016/j.jim.2017.08.004CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sieber T, Hare E, Hofmann H, Trepel M (2015) Biomathematical description of synthetic peptide libraries. PLoS One 10(6):e0129200.  https://doi.org/10.1371/journal.pone.0129200CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rojas G, Tundidor Y, Infante YC (2014) High throughput functional epitope mapping: revisiting phage display platform to scan target antigen surface. MAbs 6:1368–1378.  https://doi.org/10.4161/mabs.36144CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cariccio VL, Domina M, Benfatto S et al (2016) Phage display revisited: epitope mapping of a monoclonal antibody directed against Neisseria meningitidis adhesin A using the PROFILER technology. MAbs 8:741–750.  https://doi.org/10.1080/19420862.2016.1158371CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Connor DO, Zantow J, Hust M et al (2016) Identification of novel immunogenic proteins of Neisseria gonorrhoeae by phage display. PLoS One 11(2):e0148986.  https://doi.org/10.1371/journal.pone.0148986CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rondot S, Koch J, Breitling F, Dübel S (2001) A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol 19:75–78.  https://doi.org/10.1038/83567CrossRefGoogle Scholar
  42. 42.
    Soltes G, Hust M, Ng KKY, Bansal A et al (2007) On the influence of vector design on antibody phage display. J Biotechnol 127:626–637.  https://doi.org/10.1016/j.jbiotec.2006.08.015CrossRefPubMedGoogle Scholar
  43. 43.
    Levy ED, De S, Teichmann SA (2012) Cellular crowding imposes global constraints on the chemistry and evolution of proteomes. Proc Natl Acad Sci U S A 109(50):20461–20466.  https://doi.org/10.1073/pnas.1209312109CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Singaravelan B, Roshini BR, Munavar MH (2010) Evidence that the supE44 mutation of Escherichia coli is an amber suppressor allele of glnX and that it also suppresses ochre and opal nonsense mutations. J Bacteriol 192(22):6039–6044.  https://doi.org/10.1128/JB.00474-10CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    O'Donoghue P, Prat L, Heinemann IU et al (2012) Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion. FEBS Lett 586(21):3931–3937.  https://doi.org/10.1016/j.febslet.2012.09.033CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Moreira GMSG, Fühner V, Hust M (2018) Epitope mapping by phage display. Methods Mol Biol 1701:497–518.  https://doi.org/10.1007/978-1-4939-7447-4_28CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Viola Fühner
    • 1
  • Philip Alexander Heine
    • 1
  • Kilian Johannes Carl Zilkens
    • 2
  • Doris Meier
    • 1
  • Kristian Daniel Ralph Roth
    • 1
  • Gustavo Marçal Schmidt Garcia Moreira
    • 1
  • Michael Hust
    • 1
    Email author
  • Giulio Russo
    • 1
  1. 1.Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und BioinformatikTechnische Universität BraunschweigBraunschweigGermany
  2. 2.YUMAB GmbHBraunschweigGermany

Personalised recommendations