Advertisement

Antigen-Specific Human Monoclonal Antibodies from Transgenic Mice

  • Susana Magadán Mompó
  • África González-FernándezEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1904)

Abstract

Due to the difficulties found when generating fully human monoclonal antibodies (mAbs) by the traditional method, several efforts have attempted to overcome these problems, with varying levels of success. One approach has been the development of transgenic mice carrying immunoglobulin (Ig) genes in germline configuration. The engineered mouse genome can undergo productive rearrangement in the B-cell population, with the generation of mouse B lymphocytes expressing human Ig (hIg) chains. To avoid the expression of mouse heavy or light chains, the endogenous mouse Ig (mIg) loci must be silenced by gene-targeting techniques. Subsequently, to obtain antigen-specific mAbs, conventional immunization protocols can be followed and the mAb technique used (fusion of activated B cells with mouse myeloma cells, screening, cloning, freezing, and testing) with these animThis chapter summarizes the most common chromatographic mAb andals expressing human Ig genes. This chapter describes the type of transgenic-knockout mice generated for various research groups, provides examples of human mAbs developed by research groups and companies, and includes protocols of immunization, generation, production, and purification of human mAbs from such mice. In addition, it also addresses the problems detected, and includes some of the methods that can be used to analyze functional activities with human mAbs.

Key words

Human monoclonal antibodies Transgenic mice Immunoglobulin transgenes Knockout mice Transloci bearing human Ig genes Gene targeting YAC-based human Ig transloci 

Notes

Acknowledgments

Financial support from the Xunta de Galicia (CINBIO, Centro singular de investigación de Galicia 2016-2019 ref. ED431G/02 and grupo de referencia competitiva ref. ED431C 2016041) and the European Union (European Regional Development Fund—ERDF) is gratefully acknowledged. S. Magadán has also received funding from People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° 600391.

References

  1. 1.
    Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Miller RA, Maloney DG, Warnke R, Levy R (1982) Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med 306:517–522PubMedCrossRefGoogle Scholar
  3. 3.
    Stas P, Pletinckx J, Gansemans Y, Lasters I (2009) Immunogenicity assessment of antibody therapeutics. In: Melvyn Little ATA (ed) Recombinant antibodies for immunotherapy. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Lo BKC (2005) Protein therapeutics: mouse, humanized and human antibodies. In: Walker JM, Rapley R (eds) Medical methods handbook. Springer, New York, pp 429–446Google Scholar
  5. 5.
    Arruebo M, Vilaboa N, Sáez Gutierrez B, Lambea J, Tres A, Valladares M, González-Fernández A (2011) Assessment of the evolution of cancer treatment therapies. Cancers 3:3279–3330PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Elbakri A, Nelson PN, Abu Odeh RO (2010) The state of antibody therapy. Hum Immunol 71:1243–1250PubMedCrossRefGoogle Scholar
  7. 7.
    Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJT (2010) The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 9:325–338CrossRefGoogle Scholar
  8. 8.
    Chester KA, Begent RH, Robson L, Keep P, Pedley RB, Boden JA et al (1994) Phage libraries for generation of clinically useful antibodies. Lancet 343:455–456PubMedCrossRefGoogle Scholar
  9. 9.
    Lonberg N (2008) Fully human antibodies from transgenic mouse and phage display platforms. Curr Opin Immunol 20:450–459PubMedCrossRefGoogle Scholar
  10. 10.
    Bratkovic T (2010) Progress in phage display: evolution of the technique and its application. Cell Mol Life Sci 67:749–767PubMedCrossRefGoogle Scholar
  11. 11.
    Hamadeh RM, Jarvis GA, Galili U, Mandrell RE, Zhou P, Griffiss JM (1992) Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J Clin Invest 89:1223–1235PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sheeley D, Merrill B, Taylor L (1997) Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal alpha-linked galactose. Anal Biochem 247:102–110PubMedCrossRefGoogle Scholar
  13. 13.
    Borrebaeck CK, Malmborg AC, Ohlin M (1993) Does endogenous glycosylation prevent the use of mouse monoclonal antibodies as cancer therapeutics? Immunol Today 14:477–479PubMedCrossRefGoogle Scholar
  14. 14.
    Kamel-Reid S, Letarte M, Doedens M, Greaves A, Murdoch B, Grunberger T et al (1991) Bone marrow from children in relapse with pre-B acute lymphoblastic leukemia proliferates and disseminates rapidly in scid mice. Blood 78:2973–2981PubMedGoogle Scholar
  15. 15.
    McCune JM (1996) Development and applications of the SCID-hu mouse model. Semin Immunol 8:187–196PubMedCrossRefGoogle Scholar
  16. 16.
    Eren R, Lubin I, Terkieltaub D, Ben-Moshe O, Zauberman A, Uhlmann R et al (1998) Human monoclonal antibodies specific to hepatitis B virus generated in a human/mouse radiation chimera: the Trimera system. Immunology 93:154–161PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Storb U (1987) Transgenic mice with immunoglobulin genes. Annu Rev Immunol 5:151–174PubMedCrossRefGoogle Scholar
  18. 18.
    Brinster RL, Ritchie KA, Hammer RE, O'Brien RL, Arp B, Storb U (1983) Expression of a microinjected immunoglobulin gene in the spleen of transgenic mice. Nature 306:332–336PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Rusconi S, Köhler G (1985) Transmission and expression of a specific pair of rearranged immunoglobulin mu and kappa genes in a transgenic mouse line. Nature 314:330–334PubMedCrossRefGoogle Scholar
  20. 20.
    Grosschedl R, Weaver D, Baltimore D, Costantini F (1984) Introduction of a mu immunoglobulin gene into the mouse germ line: specific expression in lymphoid cells and synthesis of functional antibody. Cell 38:647–658PubMedCrossRefGoogle Scholar
  21. 21.
    González-Fernández A, Milstein C (1993) Analysis of somatic hypermutation in mouse Peyer’s patches using immunoglobulin kappa light-chain transgenes. Proc Natl Acad Sci U S A 90:9862–9866PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Betz AG, Milstein C, González-Fernández A, Pannell R, Larson T, Neuberger MS (1994) Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell 77:239–248PubMedCrossRefGoogle Scholar
  23. 23.
    Yélamos J, Klix N, Goyenechea B, Lozano F, Chui YL, González-Fernández A, Pannell R, Neuberger MS, Milstein C (1995) Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature 376:225–229PubMedCrossRefGoogle Scholar
  24. 24.
    Wagner S, Popov A, Davies S, Xian J, Neuberger M, Brüggemann M (1994) The diversity of antigen-specific monoclonal antibodies from transgenic mice bearing human immunoglobulin gene miniloci. Eur J Immunol 24:2672–2681PubMedCrossRefGoogle Scholar
  25. 25.
    Brüggemann M, Taussig MJ (1997) Production of human antibody repertoires in transgenic mice. Curr Opin Biotechnol 8:455–458PubMedCrossRefGoogle Scholar
  26. 26.
    Jakobovits A, Green LL, Hardy MC, Maynard-Currie CE, Tsuda H, Louie DM et al (1995) Production of antigen-specific human antibodies from mice engineered with human heavy and light chain YACs. Ann N Y Acad Sci 764:525–535PubMedCrossRefGoogle Scholar
  27. 27.
    Brüggemann M, Osborn MJ, Ma B, Hayre J, Avis S, Lundstrom B, Buelow R (2015) Human antibody production in transgenic mice. Arch Immunol Ther Exp 63:101–108CrossRefGoogle Scholar
  28. 28.
    Brüggemann M, Caskey HM, Teale C, Waldmann H, Williams GT, Surani MA et al (1989) A repertoire of monoclonal antibodies with human heavy chains from transgenic mice. Proc Natl Acad Sci U S A 86:6709–6713PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Zou X, Xian J, Davies N, Popov A, Brüggemann M (1996) Dominant expression of a 1.3 Mb human Ig kappa locus replacing mouse light chain production. FASEB J 10:1227–1232PubMedCrossRefGoogle Scholar
  30. 30.
    Taylor L, Carmack C, Schramm S, Mashayekh R, Higgins K, Kuo C et al (1992) A transgenic mouse that expresses a diversity of human sequence heavy and light chain immunoglobulins. Nucleic Acids Res 20:6287–6295PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lonberg N, Taylor LD, Harding FA, Trounstine M, Higgins KM, Schramm SR et al (1994) Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368:856–859PubMedCrossRefGoogle Scholar
  32. 32.
    Brüggemann M, Neuberger MS (1996) Strategies for expressing human antibody repertoires in transgenic mice. Immunol Today 17:391–397PubMedCrossRefGoogle Scholar
  33. 33.
    Wagner SD, Gross G, Cook GP, Davies SL, Neuberger MS (1996) Antibody expression from the core region of the human IgH locus reconstructed in transgenic mice using bacteriophage P1 clones. Genomics 35:405–414PubMedCrossRefGoogle Scholar
  34. 34.
    Green LL, Hardy MC, Maynard-Currie CE, Tsuda H, Louie DM, Mendez MJ et al (1994) Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 7:13–21PubMedCrossRefGoogle Scholar
  35. 35.
    Mendez M, Green L, Corvalan JR, Jia X, Maynard-Currie C, Yang X et al (1997) Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 15:146–156PubMedCrossRefGoogle Scholar
  36. 36.
    Jakobovits A (1998) Production and selection of antigen-specific fully human monoclonal antibodies from mice engineered with human Ig loci. Adv Drug Deliv Rev 31(1–2):33–42PubMedCrossRefGoogle Scholar
  37. 37.
    Tomizuka K, Yoshida H, Uejima H, Kugoh H, Sato K, Ohguma A et al (1997) Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet 16:133–143PubMedCrossRefGoogle Scholar
  38. 38.
    Murphy AJ, Macdonald LE, Stevens S et al (2014) Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc Natl Acad Sci U S A 111:5153–5158PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Macdonald LE, Karow M, Stevens S, Auerbach W, Poueymirou WT, Yasenchak J, Frendewey D, Valenzuela DM, Giallourakis CC, Alt FW, Yancopoulos GD, Murphy AJ (2014) Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes. Proc Natl Acad Sci U S A 111:5147–5552PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Sano A, Matsushita H, Wu H, Jiao JA, Kasinathan P, Sullivan EJ, Wang Z, Kuroiwa Y (2013) Physiological level production of antigen-specific human immunoglobulin in cloned transchromosomic cattle. PLoS One 8:e78119PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Matsushita H, Sano A, Wu H, Jiao JA, Kasinathan P, Sullivan EJ, Wang Z, Kuroiwa Y (2014) Triple immunoglobulin gene knockout transchromosomic cattle: bovine lambda cluster deletion and its effect on fully human polyclonal antibody production. PLoS One 9:e90383PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Davies NP, Rosewell IR, Richardson JC, Cook GP, Neuberger MS, Brownstein BH, Norris ML, Brüggemann M (1993) Creation of mice expressing human antibody light chains by introduction of a yeast artificial chromosome containing the core region of the human immunoglobulin kappa locus. Biotechnology (N Y) 11:911–914Google Scholar
  43. 43.
    Fishwild DM, O’Donnell SL, Bengoechea T, Hudson DV, Harding F, Bernhard SL et al (1996) High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol 14:845–851PubMedCrossRefGoogle Scholar
  44. 44.
    Popov A, Zou X, Xian J, Nicholson I, Brüggemann M (1999) A human immunoglobulin lambda locus is similarly well expressed in mice and humans. J Exp Med 189:1611–1620PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kitamura D, Roes J, Kühn R, Rajewsky K (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350:423–426PubMedCrossRefGoogle Scholar
  46. 46.
    Chen J, Trounstine M, Alt FW, Young F, Kurahara C, Loring JF et al (1993) Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int Immunol 5:647–656PubMedCrossRefGoogle Scholar
  47. 47.
    Nitschke L, Kosco M, Köhler G, Lamers M (1993) Immunoglobulin D-deficient mice can mount normal immune responses to thymus-independent and -dependent antigens. Proc Natl Acad Sci U S A 90:1887–1891PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Oettgen H, Martin T, Wynshaw-Boris A, Deng C, Drazen J, Leder P (1994) Active anaphylaxis in IgE-deficient mice. Nature 370:367–370PubMedCrossRefGoogle Scholar
  49. 49.
    Erlandsson L, Andersson K, Sigvardsson M, Lycke N, Leanderson T (1998) Mice with an inactivated joining chain locus have perturbed IgM secretion. Eur J Immunol 28:2355–2365PubMedCrossRefGoogle Scholar
  50. 50.
    Ménoret S, Iscache AL, Tesson L, Rémy S, Usal C, Osborn MJ, Cost GJ, Brüggemann M, Buelow R, Anegon I (2010) Characterization of Immunoglobulin heavy chain knockout rats. Eur J Immunol 40:2932–2941PubMedCrossRefGoogle Scholar
  51. 51.
    Zou Y, Takeda S, Rajewsky K (1993) Gene targeting in the Ig kappa locus: efficient generation of lambda chain-expressing B cells, independent of gene rearrangements in Ig kappa. EMBO J 12:811–820PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Takeda S, Zou YR, Bluethmann H, Kitamura D, Muller U, Rajewsky K (1993) Deletion of the immunoglobulin kappa chain intron enhancer abolishes kappa chain gene rearrangement in cis but not lambda chain gene rearrangement in trans. EMBO J 12:2329–2336PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Chen J, Trounstine M, Kurahara C, Young F, Kuo CC, Xu Y et al (1993) B cell development in mice that lack one or both immunoglobulin kappa light chain genes. EMBO J 12:821–830PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Sanchez P, Drapier AM, Cohen-Tannoudji M, Colucci E, Babinet C, Cazenave PA (1994) Compartmentalization of lambda subtype expression in the B cell repertoire of mice with a disrupted or normal C kappa gene segment. Int Immunol 6:711–719PubMedCrossRefGoogle Scholar
  55. 55.
    Zou X, Xian J, Popov AV, Rosewell IR, Müller M, Brüggemann M (1995) Subtle differences in antibody responses and hypermutation of lambda light chains in mice with a disrupted chi constant region. Eur J Immunol 25:2154–2162PubMedCrossRefGoogle Scholar
  56. 56.
    Green LL, Jakobovits A (1998) Regulation of B cell development by variable gene complexity in mice reconstituted with human immunoglobulin yeast artificial chromosomes. J Exp Med 188:483–495PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Zou X, Piper T, Smith J, Allen N, Xian J, Brüggemann M (2003) Block in development at the pre-B-II to immature B cell stage in mice without Ig kappa and Ig lambda light chain. J Immunol 170:1354–1361PubMedCrossRefGoogle Scholar
  58. 58.
    Tomizuka K, Shinohara T, Yoshida H, Uejima H, Ohguma A, Tanaka S et al (2000) Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci U S A 97:722–727PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Nicholson I, Zou X, Popov A, Cook G, Corps E, Humphries S et al (1999) Antibody repertoires of four- and five-feature translocus mice carrying human immunoglobulin heavy chain and kappa and lambda light chain yeast artificial chromosomes. J Immunol 163:6898–6906PubMedGoogle Scholar
  60. 60.
    Pruzina S, Williams G, Kaneva G, Davies S, Martín-López A, Brüggemann M et al (2011) Human monoclonal antibodies to HIV-1 gp140 from mice bearing YAC-based human immunoglobulin transloci. Protein Eng Des Sel 24:791–799PubMedCrossRefGoogle Scholar
  61. 61.
    Magadán S, Valladares M, Suarez E, Sanjuán I, Molina A, Ayling C et al (2002) Production of antigen-specific human monoclonal antibodies: comparison of mice carrying IgH/kappa or IgH/kappa/lambda transloci. Biotechniques 33:680–684PubMedCrossRefGoogle Scholar
  62. 62.
    Molina A, Valladares M, Sancho D, Viedma F, Sanjuan I, Gambón F, Sánchez-Madrid F, González-Fernández A (2003) The use of transgenic mice for the production of a human monoclonal antibody specific for human CD69 antigen. J Immunol Methods 2823:147–158CrossRefGoogle Scholar
  63. 63.
    Suárez E, Magadán S, Sanjuán I, Valladares M, Molina A, Gambón F, Díaz-Espada F, González-Fernández A (2006) Rearrangement of only one human IGHV gene is sufficient to generate a wide repertoire of antigen specific antibody responses in transgenic mice. Mol Immunol 43:1827–1835PubMedCrossRefGoogle Scholar
  64. 64.
    Díaz B, Sanjuan I, Gambón F, Loureiro C, Magadán S, González-Fernández A (2009) Generation of a human IgM monoclonal antibody directed against HLA class II molecules: a potential agent in the treatment of haematological malignancies. Cancer Immunol Immunother 58:351–360PubMedCrossRefGoogle Scholar
  65. 65.
    Magadán S, Sanjuán I, Valladares M et al (2004) A new potential therapeutic agent against B cell malignancies. In: 12th annual international congress of immunology/4th annual conference of the Federation-of-Clinical-Immunology-Societies (FOCIS). Medimond International Proceedings, Montreal, Canada, pp 409–422Google Scholar
  66. 66.
    Xu J, Davis M (2000) Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13:37–45PubMedCrossRefGoogle Scholar
  67. 67.
    Lonberg N (2008) Human monoclonal antibodies from transgenic mice. Handb Exp Pharmacol 181:69–97CrossRefGoogle Scholar
  68. 68.
    Green L (1999) Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J Immunol Methods 231:11–23PubMedCrossRefGoogle Scholar
  69. 69.
    Spits H (2014) New models of human immunity. Nat Biotechnol 32:335–336PubMedCrossRefGoogle Scholar
  70. 70.
    Ishida I, Tomizuka K, Yoshida H, Tahara T, Takahashi N, Ohguma A et al (2002) Production of human monoclonal and polyclonal antibodies in TransChromo animals. Cloning Stem Cells 4:91–102PubMedCrossRefGoogle Scholar
  71. 71.
    Chen WC, Murawsky CM (2018) Strategies for generating diverse antibody repertoires using transgenic animals expressing human antibodies. Front Immunol 9:460PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10:345–352PubMedCrossRefGoogle Scholar
  73. 73.
    Green LL (2014) Transgenic mouse strains as platforms for the successful discovery and development of human therapeutic monoclonal antibodies. Curr Drug Discov Technol 11:74–84PubMedCrossRefGoogle Scholar
  74. 74.
    Lee EC, Liang Q, Ali H, Bayliss L, Beasley A, Bloomfield-Gerdes T, Bonoli L, Brown R, Campbell J, Carpenter A, Chalk S, Davis A, England N, Fane-Dremucheva A, Franz B, Germaschewski V, Holmes H, Holmes S, Kirby I, Kosmac M, Legent A, Lui H, Manin A, O'Leary S, Paterson J, Sciarrillo R, Speak A, Spensberger D, Tuffery L, Waddell N, Wang W, Wells S, Wong V, Wood A, Owen MJ, Friedrich GA, Bradley A (2014) Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery. Nat Biotechnol 32:356–363PubMedCrossRefGoogle Scholar
  75. 75.
    Osborn MJ, Ma B, Avis S et al (2013) High-affinity IgG antibodies develop naturally in Ig-knockout rats carrying germline human IgH/Igkappa/Iglambda loci bearing the rat CH region. J Immunol 190:1481–1490PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Galfrè G, Howe S, Milstein C, Butcher G, Howard J (1977) Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature 266:550–552PubMedCrossRefGoogle Scholar
  77. 77.
    Galfrè G, Milstein C (1981) Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol 3:3–46CrossRefGoogle Scholar
  78. 78.
    Lefranc M (2003) IMGT, the international ImMunoGeneTics database. Nucleic Acids Res 31:307–310PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Nilson B, Lögdberg L, Kastern W, Björck L, Akerström B (1993) Purification of antibodies using protein L-binding framework structures in the light chain variable domain. J Immunol Methods 164:33–40PubMedCrossRefGoogle Scholar
  80. 80.
    Dewar V, Voet P, Denamur F, Smal J (2005) Industrial implementation of in vitro production of monoclonal antibodies. ILAR J 46:307–313PubMedCrossRefGoogle Scholar
  81. 81.
    Parola C, Neumeier D, Reddy ST (2018) Integrating high-throughput screening and sequencing for monoclonal antibody discovery and engineering. Immunology 153:31–41PubMedCrossRefGoogle Scholar
  82. 82.
    Briney B, Sok D, Jardine JG, Kulp DW, Skog P, Menis S, Jacak R, Kalyuzhniy O, de Val N et al (2016) Tailored immunogens direct affinity maturation toward HIV neutralizing antibodies. Cell 166:1459–1470PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Reddy ST, Ge X, Miklos AE, Hughes RA, Kang SH, Hoi KH, Chrysostomou C, Hunicke-Smith SP, Iverson BL, Tucker PW, Ellington AD, Georgiou G (2010) Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nat Biotechnol 28:965–969PubMedCrossRefGoogle Scholar
  84. 84.
    Wang B, Kluwe CA, Lungu OI, DeKosky BJ, Kerr SA, Johnson EL, Jung J, Rezigh AB, Carroll SM, Reyes AN, Bentz JR, Villanueva I, Altman AL, Davey RA, Ellington AD, Georgiou G (2015) Facile discovery of a diverse panel of anti-Ebola virus antibodies by immune repertoire mining. Sci Rep 5:13926PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wang B, Lee CH, Johnson EL, Kluwe CA, Cunningham JC, Tanno H et al (2016) Discovery of high affinity anti-ricin antibodies by B cell receptor sequencing and by yeast display of combinatorial VH:VL libraries from immunized animals. MAbs 8:1035–1044PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Susana Magadán Mompó
    • 1
  • África González-Fernández
    • 1
    Email author
  1. 1.Immunology, Centro de Investigaciones Biomédicas (CINBIO), Centro de Investigación Singular de Galicia, Instituto de Investigación Sanitaria Galicia SurUniversidad de VigoVigoSpain

Personalised recommendations