Antibody Fragments Humanization: Beginning with the End in Mind

  • Nicolas Aubrey
  • Philippe BillialdEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1904)


Molecular engineering has made possible to reformat monoclonal antibodies into smaller antigen-binding structures like scFvs, diabodies, Fabs with new potential in vivo applications because they do not induce Fc-mediated functions. However, most of these molecules are from rodent origin. As a consequence, they are immunogenic and approval for administration to humans requires prior humanization. Today, there is no well-identified strategy to create recombinant humanized antibody V-domains that preserve the antigen-binding characteristics of the parental antibody associated with high stability and solubility. Here, we propose a strategy that consists in grafting CDRs onto properly chosen human antibody frameworks in order to reduce immunogenicity. A flowchart indicates the way to proceed in order to introduce an internal affinity purification tag while structural refinements are proposed to maintain antigen-binding characteristics. The best humanized candidates are identified through selection steps including in silico analysis, research scale production followed by early functional evaluation, purification assays, aggregation, and stability assessment.

Key words

Monoclonal antibody Therapeutic antibody Fab scFv Protein L Humanization CDR grafting 


  1. 1.
    Alvarenga LM, De Moura JF, Billiald P (2017) Recombinant antibodies: trends for standardized immunological probes and drugs. In: Current developments in biotechnology and bioengineering. Elsevier Science, Amsterdam, Boston, pp 97–121CrossRefGoogle Scholar
  2. 2.
    Nelson AL (2010) Antibody fragments: hope and hype. MAbs 2:77–83CrossRefGoogle Scholar
  3. 3.
    Grodzki AC, Berenstein E (2010) Antibody purification: affinity chromatography – protein A and protein G Sepharose. Methods Mol Biol 588:33–41CrossRefGoogle Scholar
  4. 4.
    Lakhrif Z, Pugnière M, Henriquet C et al (2016) A method to confer Protein L binding ability to any antibody fragment. MAbs 8:379–388CrossRefGoogle Scholar
  5. 5.
    Lebozec K, Jandrot-Perrus M, Avenard G et al (2018) Quality and cost assessment of a recombinant antibody fragment produced from mammalian, yeast and prokaryotic host cells: a case study prior to pharmaceutical development. New Biotechnol 44:31–40CrossRefGoogle Scholar
  6. 6.
    Fields C, O’Connell D, Xiao S et al (2013) Creation of recombinant antigen-binding molecules derived from hybridomas secreting specific antibodies. Nat Protoc 8:1125–1148CrossRefGoogle Scholar
  7. 7.
    Schuurman J, Parren PW (2016) Editorial overview: special section: new concepts in antibody therapeutics: what’s in store for antibody therapy? Curr Opin Immunol 40:vii–xiiiCrossRefGoogle Scholar
  8. 8.
    Wagner CL, Schantz A, Barnathan E et al (2003) Consequences of immunogenicity to the therapeutic monoclonal antibodies ReoPro and Remicade. Dev Biol 112:37–53Google Scholar
  9. 9.
    Harding FA, Stickler MM, Razo J et al (2010) The immunogenicity of humanized and fully human antibodies. MAbs 2:256–265CrossRefGoogle Scholar
  10. 10.
    Moussa EM, Panchal JP, Moorthy BS et al (2016) Immunogenicity of therapeutic protein aggregates. J Pharm Sci 105:417–430CrossRefGoogle Scholar
  11. 11.
    Lebozec K, Jandrot-Perrus M, Avenard G et al (2017) Design, development and characterization of ACT017, a humanized Fab that blocks platelet’s glycoprotein VI function without causing bleeding risks. MAbs 9:945–958CrossRefGoogle Scholar
  12. 12.
    Abhinandan KR, Martin ACR (2007) Analyzing the “degree of humanness” of antibody sequences. J Mol Biol 369:852–862CrossRefGoogle Scholar
  13. 13.
    Abhinandan KR, Martin ACR (2010) Analysis and prediction of VH/VL packing in antibodies. Protein Eng Des Sel 23:689–697CrossRefGoogle Scholar
  14. 14.
    Lefranc M-P, Ehrenmann F, Ginestoux C et al (2012) Use of IMGT(®) databases and tools for antibody engineering and humanization. Methods Mol Biol 907:3–37CrossRefGoogle Scholar
  15. 15.
    Lepore R, Olimpieri PP, Messih MA et al (2017) PIGSPro: prediction of immunoGlobulin structures v2. Nucleic Acids Res 45:W17–W23CrossRefGoogle Scholar
  16. 16.
    Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890CrossRefGoogle Scholar
  17. 17.
    Appel RD, Bairoch A, Hochstrasser DF (1994) A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. Trends Biochem Sci 19:258–260CrossRefGoogle Scholar
  18. 18.
    Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163–175PubMedGoogle Scholar
  19. 19.
    Bradbury A, Plückthun A (2015) Reproducibility: standardize antibodies used in research. Nature 518:27–29CrossRefGoogle Scholar
  20. 20.
    Bradbury ARM, Trinklein ND, Thie H et al (2018) When monoclonal antibodies are not monospecific: hybridomas frequently express additional functional variable regions. mAbs 10(4):539–546CrossRefGoogle Scholar
  21. 21.
    Ehrenmann F, Lefranc M-P (2011) IMGT/DomainGapAlign: IMGT standardized analysis of amino acid sequences of variable, constant, and groove domains (IG, TR, MH, IgSF, MhSF). Cold Spring Harb Protoc 2011:737–749PubMedGoogle Scholar
  22. 22.
    Riechmann L, Clark M, Waldmann H et al (1988) Reshaping human antibodies for therapy. Nature 332:323–327CrossRefGoogle Scholar
  23. 23.
    Lefranc M-P, Pommié C, Ruiz M et al (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27:55–77CrossRefGoogle Scholar
  24. 24.
    Chothia C, Lesk AM, Gherardi E et al (1992) Structural repertoire of the human VH segments. J Mol Biol 227:799–817CrossRefGoogle Scholar
  25. 25.
    Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 196:901–917CrossRefGoogle Scholar
  26. 26.
    North B, Lehmann A, Dunbrack RL (2011) A new clustering of antibody CDR loop conformations. J Mol Biol 406:228–256CrossRefGoogle Scholar
  27. 27.
    Gao SH, Huang K, Tu H et al (2013) Monoclonal antibody humanness score and its applications. BMC Biotechnol 13:55CrossRefGoogle Scholar
  28. 28.
    Queen C, Schneider WP, Selick HE et al (1989) A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci U S A 86:10029–10033CrossRefGoogle Scholar
  29. 29.
    Waldmann H, Hale G (2005) CAMPATH: from concept to clinic. Philos Trans R Soc Lond Ser B Biol Sci 360:1707–1711CrossRefGoogle Scholar
  30. 30.
    Woloschak GE, Krco CJ (1987) Regulation of kappa/lambda immunoglobulin light chain expression in normal murine lymphocytes. Mol Immunol 24:751–757CrossRefGoogle Scholar
  31. 31.
    Pommié C, Levadoux S, Sabatier R et al (2004) IMGT standardized criteria for statistical analysis of immunoglobulin V-REGION amino acid properties. J Mol Recognit 17:17–32CrossRefGoogle Scholar
  32. 32.
    Swindells MB, Porter CT, Couch M et al (2017) abYsis: integrated antibody sequence and structure-management, analysis, and prediction. J Mol Biol 429:356–364CrossRefGoogle Scholar
  33. 33.
    Getts DR, Getts MT, McCarthy DP et al (2010) Have we overestimated the benefit of human(ized) antibodies? MAbs 2:682–694CrossRefGoogle Scholar
  34. 34.
    De Groot AS, McMurry J, Moise L (2008) Prediction of immunogenicity: in silico paradigms, ex vivo and in vivo correlates. Curr Opin Pharmacol 8:620–626CrossRefGoogle Scholar
  35. 35.
    Jawa V, Cousens LP, Awwad M et al (2013) T-cell dependent immunogenicity of protein therapeutics: preclinical assessment and mitigation. Clin Immunol 149:534–555CrossRefGoogle Scholar
  36. 36.
    Nettleship JE, Flanagan A, Rahman-Huq N et al (2012) Converting monoclonal antibodies into Fab fragments for transient expression in mammalian cells. In: Hartley JL (ed) Protein expression in mammalian cells. Humana Press, Totowa, NJ, pp 137–159CrossRefGoogle Scholar
  37. 37.
    Gupta SK, Shukla P (2017) Microbial platform technology for recombinant antibody fragment production: a review. Crit Rev Microbiol 43:31–42CrossRefGoogle Scholar
  38. 38.
    Raynal B, Lenormand P, Baron B et al (2014) Quality assessment and optimization of purified protein samples: why and how? Microb Cell Fact 13:180CrossRefGoogle Scholar
  39. 39.
    Callis PR (1997) 1La and 1Lb transitions of tryptophan: applications of theory and experimental observations to fluorescence of proteins. Methods Enzymol 278:113–150CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UMR Université-INRA ISP 1282, BioMAP, Université de ToursToursFrance
  2. 2.School of PharmacyParis-Sud UniversityChâtenay-MalabryFrance

Personalised recommendations