Detection of Autoantibodies by Indirect Immunofluorescence Cytochemistry on Hep-2 Cells

  • Alessandra Dellavance
  • Luis Eduardo Coelho AndradeEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1901)


Indirect immunofluorescence assay (IFA) has been used for detection of autoantibodies against cellular antigens for more than 50 years. Originally using rodent tissue as substrate, the method was optimized by using the human immortal HEp-2 cell line derived from a larynx epidermal carcinoma. The HEp-2/IFA platform allows for optimal visualization of several cellular domains recognized by autoantibodies in the samples being tested. Serial dilution allows for the estimation of the concentration (titer) of the autoantibodies in the sample. Judicious analysis of the topographic distribution of the immunofluorescence (pattern) provides useful hints on the most plausible autoantigens being recognized, vis-à-vis the cognate autoantibodies. The importance of the HEp-2/IFA pattern has been recently emphasized by the International Consensus on ANA Patterns (ICAP), an initiative that established a comprehensive classification of the most relevant and prevalent HEp-2/IFA patterns (designated anti-cell (AC) patterns) and harmonized its nomenclature. The former designation “antinuclear antibody test” has been progressively replaced by the term “anti-cell antibody test,” due to the recognition that the HEp-2/IFA method in fact allows the detection of autoantibodies to several cellular domains, such as the cytoplasm and mitotic apparatus.

The performance of the HEp-2/IFA test is strongly influenced by several technical details, including cell culture conditions, cell fixation and permeabilization methods, choice and titration of fluorochrome-conjugated secondary antibody, use and choice of blocking solutions, washing buffers, and antifading mounting medium. The several steps of the procedure must be carefully performed in order to avoid the formation of false positive fluorescent artifacts. The quality control of the assay involves the use of serum standards for negative, low positive and strongly positive reaction in each run of the assay. In addition, every new lot or new brand of HEp-2 slides should be evaluated by using a panel of standard sera yielding the most relevant AC patterns. Special attention should be dedicated to the training of personnel for the analysis of the slides at the microscope. These should be able to identify possible artifacts, recognize all relevant AC patterns, and formulate possible reflex tests according to the observed AC patterns.

Key words

Indirect immunofluorescence HEp-2 cells Antinuclear antibody Autoantibodies Autoimmunity testing Assay standardization Methods in autoimmunity testing 


  1. 1.
    Coons AH, Creech HJ, Jones RN (1941) Immunological properties of an antibody containing a fluorescent group. Exp Biol Med 47(2):200–202. Scholar
  2. 2.
    Coons AH (1949) Localization of antigen in tissue cells: Ii. Improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med 91(1):1–13. Scholar
  3. 3.
    Meroni PL, Schur PH (2010) ANA screening: an old test with new recommendations. Ann Rheum Dis 69(8):1420–1422. Scholar
  4. 4.
    Nelson-Rees W, Daniels D, Flandermeyer R (1981) Cross-contamination of cells in culture. Science 212(4493):446–452. Scholar
  5. 5.
    Satoh M, Chan EK, Sobel ES et al (2007) Clinical implication of autoantibodies in patients with systemic rheumatic diseases. Expert Rev Clin Immunol 3:721–738CrossRefGoogle Scholar
  6. 6.
    Fritzler MJ, Pauls JD, Kinsella TD et al (1985) Antinuclear, anticytoplasmic, and anti-Sjogren’s syndrome antigen A (SS-A/Ro) antibodies in female blood donors. Clin Immunol Immunopathol 36:120–128CrossRefGoogle Scholar
  7. 7.
    De Vlam K, De Keyser F, Verbruggen G et al (1993) Detection and identification of antinuclear autoantibodies in the serum of normal blood donors. Clin Exp Rheumatol 11:393–397PubMedGoogle Scholar
  8. 8.
    Tan EM, Feltkamp TE, Smolen JS et al (1997) Range of antinuclear antibodies in “healthy” individuals. Arthritis Rheum 40:1601–1611CrossRefGoogle Scholar
  9. 9.
    Mariz HA, Sato EI, Barbosa SH et al (2011) Pattern on the antinuclear antibody-HEp-2 test is a critical parameter for discriminating antinuclear antibody-positive healthy individuals and patients with autoimmune rheumatic diseases. Arthritis Rheum 63:191–200CrossRefGoogle Scholar
  10. 10.
    Dellavance A, Gabriel A, Cintra AFU et al (2003) II Brazilian consensus on antinuclear antibodies on HEp-2 cells. Rev Bras Reumatol 43:129–140CrossRefGoogle Scholar
  11. 11.
    Sack U, Conrad K, Csernok E, German EASI (European Autoimmunity Standardization Initiative) et al (2009) Autoantibody detection using indirect immunofluorescence on HEp-2 cells. Ann N Y Acad Sci 1173:166–173CrossRefGoogle Scholar
  12. 12.
    Wiik AS, Hoier-Madsen M, Forslid J et al (2010) Antinuclear antibodies: a contemporary nomenclature using HEp-2 cells. J Autoimmun 35:276–290CrossRefGoogle Scholar
  13. 13.
    Chan EK, Damoiseaux J, Carballo OG et al (2015) Report of the first international consensus on standardized nomenclature of antinuclear antibody HEp-2 cell patterns 2014–2015. Front Immunol 6:412. Scholar
  14. 14.
    Harris P (1980) Distribution of tubulin-containing structures in the egg of the sea urchin Strongylocentrotus purpuratus from fertilization through first cleavage. J Cell Biol 84(3):668–679. Scholar
  15. 15.
    Lidke DS, Nagy P, Heintzmann R et al (2004) Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction. Nat Biotechnol 22(2):198–203. Scholar
  16. 16.
    Hagedorn M, Neuhaus EM, Soldati T (2006) Optimized fixation and immunofluorescence staining methods for Dictyostelium cells. Methods Mol Biol 346:327–338. Scholar
  17. 17.
    Mcghee JD, Hippel PH (1975) Formaldehyde as a probe of DNA structure. I. Reaction with exocyclic amino groups of DNA bases. Biochemistry 14(6):1281–1296. Scholar
  18. 18.
    Mcghee JD, Hippel PH (1975) Formaldehyde as a probe of DNA structure. II. Reaction with endocyclic imino groups of DNA bases. Biochemistry 14(6):1297–1303. Scholar
  19. 19.
    Heggeness MH, Wang K, Singer SJ (1977) Intracellular distributions of mechanochemical proteins in cultured fibroblasts. Proc Natl Acad Sci 74(9):3883–3887. Scholar
  20. 20.
    Metso T, Haahtela T, Sevéus L (2002) Identification of intracellular markers in induced sputum and bronchoalveolar lavage samples in patients with respiratory disorders and healthy persons. Respir Med 96(11):918–926. Scholar
  21. 21.
    Lichtenberg D, Robson RJ, Dennis EA (1983) Solubilization of phospholipids by detergents structural and kinetic aspects. Biochim Biophys Acta 737(2):285–304. Scholar
  22. 22.
    Porter LA (2002) Nuclear localization of cyclin B1 regulates DNA damage-induced apoptosis. Blood 101(5):1928–1933. Scholar
  23. 23.
    Donnellan R, Chetty R (1998) Cyclin D1 and human neoplasia. Mol Pathol 51(1):1–7. Scholar
  24. 24.
    Kelman Z (1997) PCNA: structure, functions and interactions. Oncogene 14(6):629–640. Scholar
  25. 25.
    Rattner JB, Rao A, Fritzler MJ et al (1993) CENP-F is a ca 400 kDa kinetochore protein that exhibits a cell-cycle dependent localization. Cell Motil Cytoskeleton 26(3):214–226. Scholar
  26. 26.
    Dammermann A, Merdes A (2002) Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol 159(2):255–266. Scholar
  27. 27.
    Francescantonio PL, Cruvinel WM, Dellavance A et al (2014) (2014) IV Brazilian guidelines for autoantibodies on HEp-2 cells. Rev Bras Reumatol 54(1):44–50CrossRefGoogle Scholar
  28. 28.
    Feltkamp TE (1970) Conjugation of fluorescein isothiocyanate to antibodies. I. Experiments on the conditions of conjugation. Immunology 18(6):865–873PubMedPubMedCentralGoogle Scholar
  29. 29.
    Beutner EH, Holborrow EJ, Johnson GD (1967) Quantitative studies of immunofluorescent staining. I. Analyses of mixed immunofluorescence. Immunology 12:327PubMedPubMedCentralGoogle Scholar
  30. 30.
    Moore GE (1967) Culture of normal human leukocytes. JAMA 199(8):519–524. Scholar
  31. 31.
    Ham RG, Mckeehan WL (1979) Media and growth requirements. Methods Enzymol:44–93.
  32. 32.
    Helgason CD, Miller CL (2013) Basic cell culture protocols. Humana Press, New YorkCrossRefGoogle Scholar
  33. 33.
    Masters JR, Stacey GN (2007) Changing medium and passaging cell lines. Nat Protoc 2(9):2276–2284. Scholar
  34. 34.
    Johnson M (2012) Fetal bovine serum. Mater Methods 2:117. Scholar
  35. 35.
    Platt JL, Michael AF (1983) Retardation of fading and enhancement of intensity of immunofluorescence by p-phenylenediamine. J Histochem Cytochem 31(6):840–842. Scholar
  36. 36.
    Longin A, Souchier C, Ffrench M et al (1993) Comparison of anti-fading agents used in fluorescence microscopy: image analysis and laser confocal microscopy study. J Histochem Cytochem 41(12):1833–1840. Scholar
  37. 37.
    Quality assurance for the indirect immunofluorescence test for autoantibodies to nuclear antigen (IF-ANA): Approved guideline (1996) NCCLS I/LA2-A, Wayne, PA, 16(11)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alessandra Dellavance
    • 1
  • Luis Eduardo Coelho Andrade
    • 2
    • 3
    Email author
  1. 1.Research and Development DivisionFleury Medicine and Health LaboratoriesSão PauloBrazil
  2. 2.Rheumatology Division, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloBrazil
  3. 3.Immunology DivisionFleury Medicine and Health LaboratoriesSão PauloBrazil

Personalised recommendations