Advertisement

Autoantibodies pp 271-280 | Cite as

Detection of Autoantibodies to Complement Components by Surface Plasmon Resonance-Based Technology

  • Remi Noe
  • Sophie Chauvet
  • Shambhuprasad K. Togarsimalemath
  • Maria Chiara Marinozzi
  • Maria Radanova
  • Vasil V. Vasilev
  • Veronique Fremeaux-Bacchi
  • Marie-Agnes Dragon-Durey
  • Lubka T. RoumeninaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1901)

Abstract

The innate immune complement system is a powerful defense cascade against pathogens, but can induce host tissue damage when overactivated. In pathological conditions, mainly but not restricted to renal diseases, such as lupus nephritis, atypical hemolytic uremic syndrome, and C3 glomerulopathies, complement is overactivated or dysregulated by autoantibodies directed against its components and regulators. Among the key autoantibody targets are the initiator of the classical complement pathway C1q, the alternative pathway regulator Factor H, the components of the alternative pathway C3 convertase complex C3 and Factor B and the convertase complex itself. This methodological article describes our experience with a method for detection of anti-complement autoantibodies in real time using surface plasmon resonance-based technology. It allows label-free evaluation of the binding efficacy and stability of the formed antigen–antibody complexes.

Key words

Autoantibodies Complement components Surface plasmon resonance 

Notes

Acknowledgments

This work was supported by grants from Agence Nationale de la Recherche ANR JCJC - INFLACOMP 2015-2018 ANR-15-CE15-0001 to LTR, RILA grant to MADD (Campus France 36666QH) and MR (№DNTS/France 01/11), ANR COMPC3 ANR-16-CE18-0015 to VFB, EU FP7 grant 2012-305608 (EURenOmics) to VFB, APHP-PHRC AOM08198 to VFB, and by INSERM.

References

  1. 1.
    Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT (2015) Complement system part II: role in immunity. Front Immunol 6:257.  https://doi.org/10.3389/fimmu.2015.00257CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT (2015) Complement system part I - Molecular mechanisms of activation and regulation. Front Immunol 6:262.  https://doi.org/10.3389/fimmu.2015.00262CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Roumenina LT, Rayes J, Frimat M, Fremeaux-Bacchi V (2016) Endothelial cells: source, barrier, and target of defensive mediators. Immunol Rev 274:307–329.  https://doi.org/10.1111/imr.12479CrossRefPubMedGoogle Scholar
  4. 4.
    Degn SE, Jensenius JC, Thiel S (2011) Disease-causing mutations in genes of the complement system. Am J Human Genet 88:689–705.  https://doi.org/10.1016/j.ajhg.2011.05.011CrossRefGoogle Scholar
  5. 5.
    Dragon-Durey MA, Blanc C, Marinozzi MC, van Schaarenburg RA, Trouw LA (2013) Autoantibodies against complement components and functional consequences. Mol Immunol 56:213–221.  https://doi.org/10.1016/j.molimm.2013.05.009CrossRefPubMedGoogle Scholar
  6. 6.
    Hristova MH, Stoyanova VS (2017) Autoantibodies against complement components in systemic lupus erythematosus–role in the pathogenesis and clinical manifestations. Lupus 26:1550–1555.  https://doi.org/10.1177/0961203317709347CrossRefPubMedGoogle Scholar
  7. 7.
    Radanova M, Vasilev V, Deliyska B, Kishore U, Ikonomov V, Ivanova D (2012) Anti-C1q autoantibodies specific against the globular domain of the C1qB-chain from patient with lupus nephritis inhibit C1q binding to IgG and CRP. Immunobiology 217:684–691.  https://doi.org/10.1016/j.imbio.2011.11.007CrossRefPubMedGoogle Scholar
  8. 8.
    Trendelenburg M, Lopez-Trascasa M, Potlukova E, Moll S, Regenass S, Frémeaux-Bacchi V, Martinez-Ara J, Jancova E, Picazo ML, Honsova E, Tesar V, Sadallah S, Schifferli J (2006) High prevalence of anti-C1q antibodies in biopsy-proven active lupus nephritis. Nephrol Dial Transplant 21:3115–3121.  https://doi.org/10.1093/ndt/gfl436CrossRefPubMedGoogle Scholar
  9. 9.
    Trouw LA, Groeneveld TW, Seelen MA, Duijs JM, Bajema IM, Prins FA, Kishore U, Salant DJ, Verbeek JS, van Kooten C, Daha MR (2004) Anti-C1q autoantibodies deposit in glomeruli but are only pathogenic in combination with glomerular C1q-containing immune complexes. J Clin Invest 114:679–688.  https://doi.org/10.1172/JCI21075CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Engel R, Rensink I, Roem D, Brouwer M, Kalei A, Perry D, Zeerleder S, Wouters D, Hamann D (2015) ELISA to measure neutralizing capacity of anti-C1-inhibitor antibodies in plasma of angioedema patients. J Immunol Methods 426:114–119.  https://doi.org/10.1016/j.jim.2015.08.011CrossRefPubMedGoogle Scholar
  11. 11.
    Blanc C, Roumenina LT, Ashraf Y, Hyvärinen S, Sethi SK, Ranchin B, Niaudet P, Loirat C, Gulati A, Bagga A, Fridman WH, Sautès-Fridman C, Jokiranta TS, Frémeaux-Bacchi V, Dragon-Durey MA (2012) Overall neutralization of complement factor H by autoantibodies in the acute phase of the autoimmune form of atypical hemolytic uremic syndrome. J Immunol 189:3528–3537.  https://doi.org/10.4049/jimmunol.1200679CrossRefPubMedGoogle Scholar
  12. 12.
    Durey MA, Sinha A, Togarsimalemath SK, Bagga A (2016) Anti-complement-factor H-associated glomerulopathies. Nat Rev Nephrol 12:563–578.  https://doi.org/10.1038/nrneph.2016.99CrossRefPubMedGoogle Scholar
  13. 13.
    Marinozzi MC, Chauvet S, Le Quintrec M, Mignotet M, Petitprez F, Legendre C, Cailliez M, Deschenes G, Fischbach M, Karras A, Nobili F, Pietrement C, Dragon-Durey MA, Fakhouri F, Roumenina LT, Fremeaux-Bacchi V (2017) C5 nephritic factors drive the biological phenotype of C3 glomerulopathies. Kidney Int 92:1232–1241.  https://doi.org/10.1016/j.kint.2017.04.017CrossRefPubMedGoogle Scholar
  14. 14.
    Paixao-Cavalcante D, López-Trascasa M, Skattum L, Giclas PC, Goodship TH, de Córdoba SR, Truedsson L, Morgan BP, Harris CL (2012) Sensitive and specific assays for C3 nephritic factors clarify mechanisms underlying complement dysregulation. Kidney Int 82:1084–1092.  https://doi.org/10.1038/ki.2012.250CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Marinozzi MC, Roumenina LT, Chauvet S, Hertig A, Bertrand D, Olagne J, Frimat M, Ulinski T, Deschênes G, Burtey S, Delahousse M, Moulin B, Legendre C, Frémeaux-Bacchi V, Le Quintrec M (2017) Anti-Factor B and Anti-C3b autoantibodies in C3 glomerulopathy and Ig-associated membranoproliferative GN. J Am Soc Nephrol 28:1603–1613.  https://doi.org/10.1681/ASN.2016030343CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Vasilev V, Noe R, Dragon-Durey MA, Chauvet S, Lazarov VJ, Deliyska BP, Fremeaux-Bacchi V, Dimitrov JD, Roumenina LT (2015) Functional characterization of autoantibodies against complement component C3 in patients with lupus nephritis. J Biol Chem 290:25343–25355.  https://doi.org/10.1074/jbc.M115.647008CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Colliard S, Jourde-Chiche N, Clavarino G, Sarrot-Reynauld F, Gout E, Deroux A, Fougere M, Bardin N, Bouillet L, Cesbron JY, Thielens NM, Dumestre-Pérard C (2017) Autoantibodies targeting ficolin-2 in systemic lupus erythematosus patients with active nephritis. Arthritis Care Res 70(8):1263–1268.  https://doi.org/10.1002/acr.23449CrossRefGoogle Scholar
  18. 18.
    Blanc C, Togarsimalemath SK, Chauvet S, Le Quintrec M, Moulin B, Buchler M, Jokiranta TS, Roumenina LT, Fremeaux-Bacchi V, Dragon-Durey MA (2015) Anti-factor H autoantibodies in C3 glomerulopathies and in atypical hemolytic uremic syndrome: one target, two diseases. J Immunol 194:5129–5138.  https://doi.org/10.4049/jimmunol.1402770CrossRefPubMedGoogle Scholar
  19. 19.
    Vanhecke D, Roumenina LT, Wan H, Osthoff M, Schaller M, Trendelenburg M (2012) Identification of a major linear C1q epitope allows detection of systemic lupus erythematosus anti-C1q antibodies by a specific peptide-based enzyme-linked immunosorbent assay. Arthritis Rheum 64:3706–3714.  https://doi.org/10.1002/art.34605CrossRefPubMedGoogle Scholar
  20. 20.
    Dragon-Durey MA, Blanc C, Roumenina LT, Poulain N, Ngo S, Bordereau P, Fremeaux-Bacchi V (2014) Anti-factor H autoantibodies assay. Methods Mol Biol 1100:249–256.  https://doi.org/10.1007/978-1-62703-724-2_20CrossRefPubMedGoogle Scholar
  21. 21.
    Nozal P, Bernabéu-Herrero ME, Uzonyi B, Szilágyi Á, Hyvärinen S, Prohászka Z, Jokiranta TS, Sánchez-Corral P, López-Trascasa M, Józsi M (2016) Heterogeneity but individual constancy of epitopes, isotypes and avidity of factor H autoantibodies in atypical hemolytic uremic syndrome. Mol Immunol 70:47–55.  https://doi.org/10.1016/j.molimm.2015.12.005CrossRefPubMedGoogle Scholar
  22. 22.
    Trojnar E, Józsi M, Uray K, Csuka D, Szilágyi Á, Milosevic D, Stojanović VD, Spasojević B, Rusai K, Müller T, Arbeiter K, Kelen K, Szabó AJ, Reusz GS, Hyvärinen S, Jokiranta TS, Prohászka Z (2017) Analysis of linear antibody epitopes on factor H and CFHR1 using sera of patients with autoimmune atypical hemolytic uremic syndrome. Front Immunol 8:302.  https://doi.org/10.3389/fimmu.2017.00302CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Remi Noe
    • 1
    • 2
    • 3
  • Sophie Chauvet
    • 1
    • 2
    • 3
    • 4
  • Shambhuprasad K. Togarsimalemath
    • 1
    • 2
    • 3
  • Maria Chiara Marinozzi
    • 1
    • 2
    • 3
  • Maria Radanova
    • 5
  • Vasil V. Vasilev
    • 6
  • Veronique Fremeaux-Bacchi
    • 1
    • 2
    • 3
    • 7
  • Marie-Agnes Dragon-Durey
    • 1
    • 2
    • 3
    • 7
  • Lubka T. Roumenina
    • 1
    • 2
    • 3
    Email author
  1. 1.INSERM, UMR_S 1138, Centre de Recherche des CordeliersParisFrance
  2. 2.Sorbonne Universités, UPMC Univ Paris 06ParisFrance
  3. 3.Université Paris Descartes, Sorbonne Paris CitéParisFrance
  4. 4.Assistance Publique–Hôpitaux de Paris, Service de néphrologie, Hôpital Européen Georges PompidouParisFrance
  5. 5.Department of Biochemistry, Molecular Medicine and NutrigenomicsMedical University of VarnaVarnaBulgaria
  6. 6.Nephrology ClinicUniversity Hospital ‘Tsaritsa Yoanna-ISUL,’ Medical UniversitySofiaBulgaria
  7. 7.Assistance Publique–Hôpitaux de Paris, Service d’Immunologie Biologique, Hôpital Européen Georges PompidouParisFrance

Personalised recommendations