Advertisement

Autoantibodies pp 205-219 | Cite as

Determination of CRP Autoantibodies by SPR Immunoassay

  • Qiu-Yu Li
  • Hai-Yun Li
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1901)

Abstract

Biosensors based on the principle of surface plasmon resonance (SPR) are surface-sensitive optical devices used for monitoring biomolecular interactions at the sensor surface in real time without any labeling. It is used in a wide variety of areas including proteomics, clinical diagnosis, environmental monitoring, drug discovery, and food analysis. C-reactive protein (CRP) is a marker of inflammation, which undergoes conformation changes in local lesions, leading to the formation of mCRP. Autoantibodies against mCRP are frequently detected in systemic lupus erythematosus (SLE) and associated with disease activity and prognosis. An SPR immunoassay for CRP autoantibodies at complement factor H–CRP interface is described in this chapter.

Key words

Surface plasmon resonance CRP Complement factor H CRP autoantibody Immobilization 

References

  1. 1.
    Nguyen HH, Park J, Kang S, Kim M (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Basel) 15:10481–10510CrossRefGoogle Scholar
  2. 2.
    Sabban S (2011) Development of an in vitro model system for studying the interaction of Equus caballus IgE with its high-affinity FcεRI receptor. University of SheffieldGoogle Scholar
  3. 3.
    Locharoenrat K, Sano H, Mizutani G (2007) Phenomenological studies of optical properties of Cu nanowires. Science Technol Adv Mat 8:277–281CrossRefGoogle Scholar
  4. 4.
    Bo L, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304CrossRefGoogle Scholar
  5. 5.
    Tawil N, Sacher E, Mandeville R, Meunier M (2012) Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosens Bioelectron 37:24–29CrossRefGoogle Scholar
  6. 6.
    Ewald M, Blanc AFL, Gauglitz G, Proll G (2013) A robust sensor platform for label-free detection of anti-Salmonella antibodies using undiluted animal sera. Anal Bioanal Chem 405:6461–6469CrossRefGoogle Scholar
  7. 7.
    Karoonuthaisiri N, Charlermroj R, Morton MJ et al (2014) Development of a M13 bacteriophage-based SPR detection using Salmonella as a case study. Sensors Actuators B Chemical 190:214–220CrossRefGoogle Scholar
  8. 8.
    Frasconi M, Tortolini C, Botrè F, Mazzei F (2010) Multifunctional au nanoparticle dendrimer-based surface plasmon resonance biosensor and its application for improved insulin detection. Anal Chem 82:7335–7342CrossRefGoogle Scholar
  9. 9.
    Drolet DW, Moonmcdermott L, Romig TS (1996) An enzyme-linked oligonucleotide assay. Nat Biotechnol 14:1021CrossRefGoogle Scholar
  10. 10.
    Hu W, He G, Zhang H et al (2014) Polydopamine-functionalization of graphene oxide to enable dual signal amplification for sensitive surface plasmon resonance imaging detection of biomarker. Anal Chem 86:4488–4493CrossRefGoogle Scholar
  11. 11.
    Šipova H, Homola J (2013) Surface plasmon resonance sensing of nucleic acids: a review. Anal Chem Acta 773:9–23CrossRefGoogle Scholar
  12. 12.
    D’Agata R, Spoto G (2013) Surface plasmon resonance imaging for nucleic acid detection. Anal Bioanal Chem 405:573–584CrossRefGoogle Scholar
  13. 13.
    Yang X, Xiaoyan Z, Qing H, Junsong Z, Weiling F (2015) Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor. Biosens Bioelectron 66(66C):512–519Google Scholar
  14. 14.
    Du Clos TW (2013) Pentraxins: structure, function, and role in inflammation. ISRN Inflamm 2013.  https://doi.org/10.1155/2013/379040
  15. 15.
    Singh SK, Suresh MV, Voleti B, Agrawal A (2008) The connection between C-reactive protein and atherosclerosis. Ann Med 40:110–120CrossRefGoogle Scholar
  16. 16.
    Pereira Da Silva JA, Elkon KB, Hughes GR et al (1980) C-reactive protein levels in systemic lupus erythematosus: a classification criterion? Arthritis Rheum 23:770–771CrossRefGoogle Scholar
  17. 17.
    Robey FA, Jones KD, Steinberg AD (1985) C-reactive protein mediates the solubilization of nuclear DNA by complement in vitro. J Exp Med 161:1344–1356CrossRefGoogle Scholar
  18. 18.
    Bell SA, Faust H, Schmid A, Meurer M (1998) Autoantibodies to C-reactive protein (CRP) and other acute-phase proteins in systemic autoimmune diseases. Clin Exp Immunol 113:327–332CrossRefGoogle Scholar
  19. 19.
    Sjowall C, Eriksson P, Almer S, Skogh T (2002) Autoantibodies to C-reactive protein is a common finding in SLE, but not in primary Sjogren’s syndrome, rheumatoid arthritis or inflammatory bowel disease. J Autoimmun 19:155–160CrossRefGoogle Scholar
  20. 20.
    Li QY, Li HY, Fu G et al (2017) autoantibodies against C-reactive protein influence complement activation and clinical course in lupus nephritis. J Amer Soc Nephrol 28(10):3044–3054CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Qiu-Yu Li
    • 1
  • Hai-Yun Li
    • 2
  1. 1.Department of Respiratory and Critical Care MedicinePeking University Third HospitalBeijingPeople’s Republic of China
  2. 2.MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical SciencesXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations