Advertisement

Bacteriophages pp 173-181 | Cite as

Use of a Silkworm Larva Model in Phage Therapy Experiments

  • Jumpei Uchiyama
  • Iyo Takemura-Uchiyama
  • Shigenobu Matsuzaki
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1898)

Abstract

Antibiotic-resistant bacteria can cause intractable infections in humans and animals, with damaging effects to health care and economics. Phage therapy is considered a possible alternative to chemotherapy for treating infections, but still requires laborious in vivo experiments before its introduction into society and its further development. Recently, silkworm larvae have been recognized as highly convenient and useful model animals, and an alternative to higher animals. We describe the procedure for experimental phage therapy to treat Staphylococcus aureus infections in silkworm larvae.

Key words

Animal model Phage purification Phage therapy Silkworm larvae Staphylococcus aureus 

Notes

Acknowledgments

We would like to thank Dr. Masanori Daibata and Ms. Takako Ujihara, Kochi University for support with the experiments.

References

  1. 1.
    Borysowski J, Miedzybrodzki R, Gorski A (eds) (2014) Phage therapy: current research and applications. Caister Academic Press, PooleGoogle Scholar
  2. 2.
    Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H, Imai S (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11:211–219CrossRefGoogle Scholar
  3. 3.
    Apidianakis Y, Rahme LG (2011) Drosophila melanogaster as a model for human intestinal infection and pathology. Dis Model Mech 4:21–30CrossRefGoogle Scholar
  4. 4.
    Chibebe Junior J, Fuchs BB, Sabino CP, Junqueira JC, Jorge AO, Ribeiro MS, Gilmore MS, Rice LB, Tegos GP, Hamblin MR, Mylonakis E (2013) Photodynamic and antibiotic therapy impair the pathogenesis of Enterococcus faecium in a whole animal insect model. PLoS One 8:e55926CrossRefGoogle Scholar
  5. 5.
    Ewbank JJ, Zugasti O (2011) C. elegans: model host and tool for antimicrobial drug discovery. Dis Model Mech 4:300–304CrossRefGoogle Scholar
  6. 6.
    Seed KD, Dennis JJ (2008) Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infect Immun 76:1267–1275CrossRefGoogle Scholar
  7. 7.
    Heo YJ, Lee YR, Jung HH, Lee J, Ko G, Cho YH (2009) Antibacterial efficacy of phages against Pseudomonas aeruginosa infections in mice and Drosophila melanogaster. Antimicrob Agents Chemother 53:2469–2474CrossRefGoogle Scholar
  8. 8.
    Santander J, Robeson J (2004) Bacteriophage prophylaxis against Salmonella enteritidis and Salmonella pullorum using Caenorhabditis elegans as an assay system. Electron J Biotechnol 7:206–209Google Scholar
  9. 9.
    Seed KD, Dennis JJ (2009) Experimental bacteriophage therapy increases survival of Galleria mellonella larvae infected with clinically relevant strains of the Burkholderia cepacia complex. Antimicrob Agents Chemother 53:2205–2208CrossRefGoogle Scholar
  10. 10.
    Takemura-Uchiyama I, Uchiyama J, Kato S, Inoue T, Ujihara T, Ohara N, Daibata M, Matsuzaki S (2013) Evaluating efficacy of bacteriophage therapy against Staphylococcus aureus infections using a silkworm larval infection model. FEMS Microbiol Lett 347:52–60CrossRefGoogle Scholar
  11. 11.
    Hamamoto H, Kurokawa K, Kaito C, Kamura K, Manitra Razanajatovo I, Kusuhara H, Santa T, Sekimizu K (2004) Quantitative evaluation of the therapeutic effects of antibiotics using silkworms infected with human pathogenic microorganisms. Antimicrob Agents Chemother 48:774–779CrossRefGoogle Scholar
  12. 12.
    Hamamoto H, Urai M, Ishii K, Yasukawa J, Paudel A, Murai M, Kaji T, Kuranaga T, Hamase K, Katsu T, Su J, Adachi T, Uchida R, Tomoda H, Yamada M, Souma M, Kurihara H, Inoue M, Sekimizu K (2015) Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Nat Chem Biol 11:127–133CrossRefGoogle Scholar
  13. 13.
    Matsuzaki S, Uchiyama J, Takemura-Uchiyama I, Daibata M (2014) The age of the phage. Nature 509:S9CrossRefGoogle Scholar
  14. 14.
    Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP (2009) Enumeration of bacteriophages by double agar overlay plaque assay. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages, methods in molecular biology, vol 501. Humana Press, New York City, NY, pp 69–76Google Scholar
  15. 15.
    Takemura-Uchiyama I, Uchiyama J, Kato S, Ujihara T, Daibata M, Matsuzaki S (2014) Genomic and phylogenetic traits of Staphylococcus phages S25-3 and S25-4 (family Myoviridae, genus Twort-like viruses). Ann Microbiol 64:1453–1456CrossRefGoogle Scholar
  16. 16.
    Adams MJ, Lefkowitz EJ, King AMQ, Harrach B, Harrison RL, Knowles NJ, Kropinski AM, Krupovic M, Kuhn JH, Mushegian AR, Nibert M, Sabanadzovic S, SanfaÓon H, Siddell SG, Simmonds P, Varsani A, Zerbini FM, Gorbalenya AE, Davison AJ (2017) Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017). Archives of Virology 162(8):2505–2538Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jumpei Uchiyama
    • 1
  • Iyo Takemura-Uchiyama
    • 1
  • Shigenobu Matsuzaki
    • 2
  1. 1.School of Veterinary MedicineAzabu UniversityKanagawaJapan
  2. 2.Department of Microbiology and Infection, Kochi Medical SchoolKochi UniversityKochiJapan

Personalised recommendations