Biobanking pp 345-357 | Cite as

Fundamentals of RNA Analysis on Biobanked Specimens

  • Samuel P. StromEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1897)


Compared to DNA, analysis of RNA is one step closer on the central dogma of biology to assessing cellular function. This makes it an extremely valuable target for research and clinical testing in nearly all areas of molecular biology. Most RNA molecules are ephemeral by nature. They exist as temporary intermediates, ostensibly enabling data transfer between the genome and the organism. Their ribose backbone renders them sensitive to simple degradation over time and they are the target molecule for numerous and abundant ribonucleases which have evolved to chop them to pieces with extreme efficiency. At the biochemical level, this means that they degrade rapidly in most physiological and laboratory conditions and are thus challenging to study. When considering specimen banking, it is critical to keep this reality in mind, as some commonly used banking modalities will not adequately preserve the relevant RNA molecules in a measureable state.

In this chapter, we explore the broad range of RNA testing methodologies in current use, with particular focus on how specimen preparation impacts analysis. Following an overview in the introduction, Subheading 2 covers the major specimen types amenable to RNA analysis in the context of biobanking. Subheading 3 discusses the applications of various RNA analysis modalities to research and clinical testing.

Key words

RNA PCR qPCR Microarray Next Generation Sequencing Transcriptome FFPE Biobanking 


  1. 1.
    Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234CrossRefGoogle Scholar
  2. 2.
    Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159CrossRefGoogle Scholar
  3. 3.
    Amaral PP, Mattick JS (2008) Noncoding RNA in development. Mamm Genome 19:454–492CrossRefGoogle Scholar
  4. 4.
    Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 105:716–721CrossRefGoogle Scholar
  5. 5.
    Lee MS, LeMaistre A, Kantarjian HM, Talpaz M, Freireich EJ et al (1989) Detection of two alternative bcr/abl mRNA junctions and minimal residual disease in Philadelphia chromosome positive chronic myelogenous leukemia by polymerase chain reaction. Blood 73:2165–2170PubMedGoogle Scholar
  6. 6.
    Micke P, Ohshima M, Tahmasebpoor S, Ren ZP, Ostman A et al (2006) Biobanking of fresh frozen tissue: RNA is stable in nonfixed surgical specimens. Lab Investig 86:202–211CrossRefGoogle Scholar
  7. 7.
    Langebrake C, Gunther K, Lauber J, Reinhardt D (2007) Preanalytical mRNA stabilization of whole bone marrow samples. Clin Chem 53:587–593CrossRefGoogle Scholar
  8. 8.
    Mutter GL, Zahrieh D, Liu C, Neuberg D, Finkelstein D et al (2004) Comparison of frozen and RNALater solid tissue storage methods for use in RNA expression microarrays. BMC Genomics 5:88CrossRefGoogle Scholar
  9. 9.
    Zeugner S, Mayr T, Zietz C, Aust DE, Baretton GB (2015) RNA quality in fresh-frozen gastrointestinal tumor specimens-experiences from the tumor and healthy tissue bank TU Dresden. Recent Results Cancer Res 199:85–93CrossRefGoogle Scholar
  10. 10.
    Ribeiro-Silva A, Zhang H, Jeffrey SS (2007) RNA extraction from ten year old formalin-fixed paraffin-embedded breast cancer samples: a comparison of column purification and magnetic bead-based technologies. BMC Mol Biol 8:118CrossRefGoogle Scholar
  11. 11.
    O'Driscoll L, Kennedy S, McDermott E, Kelehan P, Clynes M (1996) Multiple drug resistance-related messenger RNA expression in archival formalin-fixed paraffin-embedded human breast tumour tissue. Eur J Cancer 32A:128–133CrossRefGoogle Scholar
  12. 12.
    Bialkowska-Hobrzanska H, Driman DK, Fletcher R, Harry V, Razvi H (2006) Expression of human telomerase reverse transcriptase, Survivin, DD3 and PCGEM1 messenger RNA in archival prostate carcinoma tissue. Can J Urol 13:2967–2974PubMedGoogle Scholar
  13. 13.
    Deben C, Zwaenepoel K, Boeckx C, Wouters A, Pauwels P et al (2013) Expression analysis on archival material revisited: isolation and quantification of RNA extracted from FFPE samples. Diagn Mol Pathol 22:59–64CrossRefGoogle Scholar
  14. 14.
    von Ahlfen S, Missel A, Bendrat K, Schlumpberger M (2007) Determinants of RNA quality from FFPE samples. PLoS One 2:e1261CrossRefGoogle Scholar
  15. 15.
    Solomon MJ, Varshavsky A (1985) Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci U S A 82:6470–6474CrossRefGoogle Scholar
  16. 16.
    Miething F, Hering S, Hanschke B, Dressler J (2006) Effect of fixation to the degradation of nuclear and mitochondrial DNA in different tissues. J Histochem Cytochem 54:371–374CrossRefGoogle Scholar
  17. 17.
    Williams C, Ponten F, Moberg C, Soderkvist P, Uhlen M et al (1999) A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol 155:1467–1471CrossRefGoogle Scholar
  18. 18.
    Li J, Smyth P, Flavin R, Cahill S, Denning K et al (2007) Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol 7:36CrossRefGoogle Scholar
  19. 19.
    Doleshal M, Magotra AA, Choudhury B, Cannon BD, Labourier E et al (2008) Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues. J Mol Diagn 10:203–211CrossRefGoogle Scholar
  20. 20.
    Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K et al (2007) Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 13:1668–1674CrossRefGoogle Scholar
  21. 21.
    Li J, Smyth P, Cahill S, Denning K, Flavin R et al (2008) Improved RNA quality and TaqMan Pre-amplification method (PreAmp) to enhance expression analysis from formalin fixed paraffin embedded (FFPE) materials. BMC Biotechnol 8:10CrossRefGoogle Scholar
  22. 22.
    Ladd AC, O'Sullivan-Mejia E, Lea T, Perry J, Dumur CI et al (2011) Preservation of fine-needle aspiration specimens for future use in RNA-based molecular testing. Cancer Cytopathol 119:102–110CrossRefGoogle Scholar
  23. 23.
    Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 1:581–585CrossRefGoogle Scholar
  24. 24.
    Bird IM (2005) Extraction of RNA from cells and tissue. Methods Mol Med 108:139–148PubMedGoogle Scholar
  25. 25.
    Kotorashvili A, Ramnauth A, Liu C, Lin J, Ye K et al (2012) Effective DNA/RNA co-extraction for analysis of microRNAs, mRNAs, and genomic DNA from formalin-fixed paraffin-embedded specimens. PLoS One 7:e34683CrossRefGoogle Scholar
  26. 26.
    Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3CrossRefGoogle Scholar
  27. 27.
    Imbeaud S, Graudens E, Boulanger V, Barlet X, Zaborski P et al (2005) Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res 33:e56CrossRefGoogle Scholar
  28. 28.
    Gallego Romero I, Pai AA, Tung J, Gilad Y (2014) RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol 12:42CrossRefGoogle Scholar
  29. 29.
    Marques AR, Espadinha C, Catarino AL, Moniz S, Pereira T et al (2002) Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 87:3947–3952PubMedGoogle Scholar
  30. 30.
    Klemke M, Drieschner N, Belge G, Burchardt K, Junker K et al (2012) Detection of PAX8-PPARG fusion transcripts in archival thyroid carcinoma samples by conventional RT-PCR. Genes Chromosomes Cancer 51:402–408CrossRefGoogle Scholar
  31. 31.
    Serpa M, Sanabani SS, Dorliac-Llacer PE, Conchon M, Pereira TD et al (2010) Molecular measurement of BCR-ABL transcript variations in chronic myeloid leukemia patients in cytogenetic remission. BMC Blood Disord 10:7PubMedPubMedCentralGoogle Scholar
  32. 32.
    Vu HL, Troubetzkoy S, Nguyen HH, Russell MW, Mestecky J (2000) A method for quantification of absolute amounts of nucleic acids by (RT)-PCR and a new mathematical model for data analysis. Nucleic Acids Res 28:E18CrossRefGoogle Scholar
  33. 33.
    Suzuki R, Takemura K, Tsutsumi M, Nakamura S, Hamajima N et al (2001) Detection of cyclin D1 overexpression by real-time reverse-transcriptase-mediated quantitative polymerase chain reaction for the diagnosis of mantle cell lymphoma. Am J Pathol 159:425–429CrossRefGoogle Scholar
  34. 34.
    de Boer CJ, van Krieken JH, Kluin-Nelemans HC, Kluin PM, Schuuring E (1995) Cyclin D1 messenger RNA overexpression as a marker for mantle cell lymphoma. Oncogene 10:1833–1840PubMedGoogle Scholar
  35. 35.
    Poodt J, Fijnheer R, Walsh IB, Hermans MH (2006) A sensitive and reliable semi-quantitative real-time PCR assay to detect JAK2 V617F in blood. Hematol Oncol 24:227–233CrossRefGoogle Scholar
  36. 36.
    Olsen RJ, Tang Z, Farkas DH, Bernard DW, Zu Y et al (2006) Detection of the JAK2(V617F) mutation in myeloproliferative disorders by melting curve analysis using the LightCycler system. Arch Pathol Lab Med 130:997–1003PubMedGoogle Scholar
  37. 37.
    Kroger N, Badbaran A, Holler E, Hahn J, Kobbe G et al (2007) Monitoring of the JAK2-V617F mutation by highly sensitive quantitative real-time PCR after allogeneic stem cell transplantation in patients with myelofibrosis. Blood 109:1316–1321CrossRefGoogle Scholar
  38. 38.
    Webster AF, Zumbo P, Fostel J, Gandara J, Hester SD et al (2015) Mining the archives: a cross-platform analysis of gene expression profiles in archival formalin-fixed paraffin-embedded (FFPE) tissue. Toxicol SciGoogle Scholar
  39. 39.
    Callari M, Lembo A, Bianchini G, Musella V, Cappelletti V et al (2014) Accurate data processing improves the reliability of Affymetrix gene expression profiles from FFPE samples. PLoS One 9:e86511CrossRefGoogle Scholar
  40. 40.
    Ciotti P, Garuti A, Ballestrero A, Cirmena G, Chiaramondia M et al (2009) Reliability and reproducibility of a RNA preamplification method for low-density array analysis from formalin-fixed paraffin-embedded breast cancer samples. Diagn Mol Pathol 18:112–118CrossRefGoogle Scholar
  41. 41.
    Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW et al (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1:155–161CrossRefGoogle Scholar
  42. 42.
    Chen Z, Duan X (2011) Ribosomal RNA depletion for massively parallel bacterial RNA-sequencing applications. Methods Mol Biol 733:93–103CrossRefGoogle Scholar
  43. 43.
    O'Neil D, Glowatz H, Schlumpberger M (2013) Ribosomal RNA depletion for efficient use of RNA-seq capacity. Curr Protoc Mol Biol Chapter 4:Unit4.19Google Scholar
  44. 44.
    Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111CrossRefGoogle Scholar
  45. 45.
    Li R, Yu C, Li Y, Lam TW, Yiu SM et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967CrossRefGoogle Scholar
  46. 46.
    Grant GR, Farkas MH, Pizarro AD, Lahens NF, Schug J et al (2011) Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics 27:2518–2528CrossRefGoogle Scholar
  47. 47.
    Piskol R, Ramaswami G, Li JB (2013) Reliable identification of genomic variants from RNA-seq data. Am J Hum Genet 93:641–651CrossRefGoogle Scholar
  48. 48.
    Ku CS, Wu M, Cooper DN, Naidoo N, Pawitan Y et al (2012) Exome versus transcriptome sequencing in identifying coding region variants. Expert Rev Mol Diagn 12:241–251CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fulgent GeneticsTemple CityUSA

Personalised recommendations