Advertisement

Biobanking pp 125-133 | Cite as

Procurement and Storage of Pleural and Peritoneal Fluids for Biobanking

  • Alberto M. MarchevskyEmail author
  • Shikha Bose
  • Beatrice Knudsen
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1897)

Abstract

There is limited information regarding the biobanking of pleural and peritoneal fluids that might supplement storage of pulmonary and thoracic tissue biospecimens. Such fluids are sometimes collected for clinical analyses and may have uses that obviate or supplement tissue samples. There has been a growing interest in using liquid biopsies as they are less invasive and may be amenable to analyses that guide targeted therapies. Integrating cytology and biobanking approaches, we describe techniques that may be used for collecting and banking pleural and peritoneal fluids.

Key words

Biobanks Biorepository Pleural fluid Peritoneal fluid 

References

  1. 1.
    Rothwell E, Maschke KJ, Botkin JR et al (2015) Biobanking research and human subjects protections: perspectives of IRB leaders. IRB 37:8–13PubMedPubMedCentralGoogle Scholar
  2. 2.
    McIntosh LD, Sharma MK, Mulvihill D et al (2015) caTissue Suite to OpenSpecimen: developing an extensible, open source, web-based biobanking management system. J Biomed Inform 57:456–464CrossRefGoogle Scholar
  3. 3.
    Mullins P, Pugh R, Vaught J (2015) Following up on ISBER (2015): call for environmental biobanking papers. Biopreserv Biobank 13:229–230CrossRefGoogle Scholar
  4. 4.
    Rush A, Battisti R, Barton B, Catchpoole D (2015) Opinions of young adults on re-consenting for biobanking. J Pediatr 167(4):925–930CrossRefGoogle Scholar
  5. 5.
    Wheelock AM, Paulson L, Litton JE, EuPA Biobank Initiative Group (2015) The EuPA Biobank Initiative: meeting the future challenges of biobanking in proteomics & systems medicine. J Proteome 127(Pt B):414–416CrossRefGoogle Scholar
  6. 6.
    Tupasela A, Snell K, Canada JA (2015) Constructing populations in biobanking. Life Sci Soc Policy 11:5CrossRefGoogle Scholar
  7. 7.
    Milley KM, Nimmo JS, Bacci B, Ryan SD, Richardson SJ, Danks JA, DogMATIC (2015) A remote biospecimen collection kit for biobanking. Biopreserv Biobank 13:247–254CrossRefGoogle Scholar
  8. 8.
    Joly Y, Dalpe G, So D, Birko S (2015) Fair shares and sharing fairly: a survey of public views on open science, informed consent and participatory research in biobanking. PLoS One 10:e0129893CrossRefGoogle Scholar
  9. 9.
    Bowton EA, Collier SP, Wang X et al (2015) Phenotype-driven plasma biobanking strategies and methods. J Pers Med 5:140–152CrossRefGoogle Scholar
  10. 10.
    Hallinan D, Friedewald M (2015) Open consent, biobanking and data protection law: can open consent be ‘informed’ under the forthcoming data protection regulation? Life Sci Soc Policy 11:1CrossRefGoogle Scholar
  11. 11.
    Pekar G, Davies H, Lukacs AP et al (2016) Biobanking multifocal breast carcinomas: sample adequacy with regard to histology and DNA content. Histopathology 68(3):411–421CrossRefGoogle Scholar
  12. 12.
    Locock L, Boylan AM (2015) Biosamples as gifts? How participants in biobanking projects talk about donation. Health Expect 19(4):805–816CrossRefGoogle Scholar
  13. 13.
    Leusmann P, Veeck J, Jakel J et al (2015) Towards sustainable data management in professional biobanking. Stud Health Technol Inform 212:94–102PubMedGoogle Scholar
  14. 14.
    Hofer P, Neururer S, Hauffe H, Insam T, Zeilner A, Gobel G (2015) Semi-automated evaluation of biomedical ontologies for the biobanking domain based on competency questions. Stud Health Technol Inform 212:65–72PubMedGoogle Scholar
  15. 15.
    Castillo-Pelayo T, Babinszky S, LeBlanc J, Watson PH (2015) The importance of biobanking in cancer research. Biopreserv Biobank 13:172–177CrossRefGoogle Scholar
  16. 16.
    Amin W, Parwani AV, Melamed J et al (2013) National mesothelioma virtual bank: a platform for collaborative research and mesothelioma biobanking resource to support translational research. Lung Cancer Int 2013:765748CrossRefGoogle Scholar
  17. 17.
    National Mesothelioma Virtual Bank. https://mesotissue.org/. Accessed Nov 2015
  18. 18.
    Krishnamurthy S (2015) Biospecimen repositories and cytopathology. Cancer Cytopathol 123:152–161CrossRefGoogle Scholar
  19. 19.
    Perskvist N, Norman I, Eklund C, Litton JE, Dillner J (2013) The Swedish cervical cytology biobank: sample handling and storage process. Biopreserv Biobank 11:19–24CrossRefGoogle Scholar
  20. 20.
    Arbyn M, Andersson K, Bergeron C et al (2011) Cervical cytology biobanks as a resource for molecular epidemiology. Methods Mol Biol 675:279–298CrossRefGoogle Scholar
  21. 21.
    Arbyn M, Van Veen EB, Andersson K et al (2010) Cervical cytology biobanking in Europe. Int J Biol Markers 25:117–125CrossRefGoogle Scholar
  22. 22.
    Boulet GA, Horvath CA, Berghmans S et al (2008) Cervical cytology biobanking: quality of DNA from archival cervical Pap-stained smears. J Clin Pathol 61:637–641CrossRefGoogle Scholar
  23. 23.
    Ugolini D, Neri M, Bennati L et al (2012) CREST biorepository for translational studies on malignant mesothelioma, lung cancer and other respiratory tract diseases: Informatics infrastructure and standardized annotation. Exp Ther Med 3:540–546CrossRefGoogle Scholar
  24. 24.
    Ugolini D, Neri M, Canessa PA et al (2008) The CREST biorepository: a tool for molecular epidemiology and translational studies on malignant mesothelioma, lung cancer, and other respiratory tract diseases. Cancer Epidemiol Biomark Prev 17:3013–3019CrossRefGoogle Scholar
  25. 25.
    Tumor Bank Caen University Hospital. https://www.chu-caen.fr/page.php?famille=8&idpage=126. Accessed Nov 2015
  26. 26.
    National Cancer Institute: Best Practices for Biospecimens Resources (2016) https://biospecimens.cancer.gov/bestpractices/2016-NCIBestPractices.pdf
  27. 27.
    Perskvist N, Bjorklund C, Dillner J (2014) A complex intervention for workflow enhancement at the Swedish cervical cytology biobank. Biopreserv Biobank 12:69–73CrossRefGoogle Scholar
  28. 28.
    Hubel A, Spindler R, Skubitz AP (2014) Storage of human biospecimens: selection of the optimal storage temperature. Biopreserv Biobank 12:165–175CrossRefGoogle Scholar
  29. 29.
    McCullough J, Haley R, Clay M et al (2010) Long-term storage of peripheral blood stem cells frozen and stored with a conventional liquid nitrogen technique compared with cells frozen and stored in a mechanical freezer. Transfusion 50:808–819CrossRefGoogle Scholar
  30. 30.
    Hubel K, Rodger E, Gaviria JM et al (2005) Effective storage of granulocytes collected by centrifugation leukapheresis from donors stimulated with granulocyte-colony-stimulating factor. Transfusion 45:1876–1889CrossRefGoogle Scholar
  31. 31.
    Hubel A, Carlquist D, Clay M, McCullough J (2004) Liquid storage, shipment, and cryopreservation of cord blood. Transfusion 44:518–525CrossRefGoogle Scholar
  32. 32.
    Hubel A, Carlquist D, Clay M, McCullough J (2003) Cryopreservation of cord blood after liquid storage. Cytotherapy 5:370–376CrossRefGoogle Scholar
  33. 33.
    Hubel A, Carlquist D, Clay M, McCullough J (2003) Short-term liquid storage of umbilical cord blood. Transfusion 43:626–632CrossRefGoogle Scholar
  34. 34.
    Mora M, Angelini C, Bignami F et al (2015) The EuroBioBank Network: 10 years of hands-on experience of collaborative, transnational biobanking for rare diseases. Eur J Hum Genet 23:1116–1123CrossRefGoogle Scholar
  35. 35.
    Castle PE, Solomon D, Hildesheim A et al (2003) Stability of archived liqui-based cervical cytologic specimens. Cancer Cytopathol 99:89–96CrossRefGoogle Scholar
  36. 36.
    Galli J, Oelrich J, Taussig MJ et al (2015) The Biobanking Analysis Resource Catalogue (BARCdb): a new research tool for the analysis of biobank samples. Nucleic Acids Res 43:D1158–D1162CrossRefGoogle Scholar
  37. 37.
    Klingstrom T (2013) Biobanking in emerging countries. Biopreserv Biobank 11:329–330CrossRefGoogle Scholar
  38. 38.
    Killian JK, Walker RI, Suuriniemi M et al (2010) Archival fine-needle aspiration cytopathology (FNAC) samples: untapped resource for clinical molecular profiling. J Mol Diagn 12:739–745CrossRefGoogle Scholar
  39. 39.
    Ladd DC, O’Sullivan-Mejia E, Lea T et al (2011) Preservation of fine needle aspiration specimens for future use in RNA-based molecular testing. Cancer Cytopathol 119:102–110CrossRefGoogle Scholar
  40. 40.
    Murphy PG, Henderson DT, Adams MD et al (2009) Isolation of RNA from cell lines and cervical cytology specimens stored in BD Sure Path preservative fluid and downstream detection of housekeeping gene and HPV E6 expression using real time RT-pCR. J Virol Methods 156:138–144CrossRefGoogle Scholar
  41. 41.
    Tarkowski TA, Rajeevan MS, Lee DR et al (2001) Improved detection of viral RNA isolated from liquid-based cytology samples. Mol Diagn 6:125–130CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alberto M. Marchevsky
    • 1
    Email author
  • Shikha Bose
    • 1
  • Beatrice Knudsen
    • 1
  1. 1.Department of Pathology and Laboratory MedicineCedars Sinai Medical CenterLos AngelesUSA

Personalised recommendations