Lyophilization of High-Concentration Protein Formulations

  • Patrick GaridelEmail author
  • Ingo Presser
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


High-concentration protein formulations are in the focus of current pharmaceutical development because the required therapeutic doses of biologics, especially monoclonal antibodies, are extremely high, ranging between 5 and 750 mg per patient. Considering applications via the sub-cutaneous route, protein concentrations much above 300 mg/mL are often requested. At present, commercialized high-concentration biologics, with protein concentrations between 150 and 200 mg/mL, are launched as lyophilized (freeze-dried) products, while liquid protein formulations are available with concentrations around 100 mg/mL.

The current chapter will address specific topics linked to high-concentration lyophilized protein formulations. The term “high-concentration protein formulation” (HCPF) is often used, but hardly ever defined. We have therefore asked, how highly concentrated can a protein formulation become? We consider this question, particularly for monoclonal antibody drugs, along with the rationale for developing HCPF and the issues encountered during formulation.

Lyophilization is the technique of choice for stabilizing labile molecules. However, for the development of high-concentration, freeze-dried protein formulations (HC-FDPFs), new challenges appear, such as extremely prolonged reconstitution times or even stability issues. Therefore, new technologies such as controlled nucleation are introduced and presented as one option for reducing these unfavorable reconstitution times.

Key words

High-concentration Protein Lyophilization Freeze-drying Controlled nucleation Pharmaceutical development Monoclonal antibody Formulation Packaging characteristics Solubility Colloidal properties 



The authors thank the following people for supporting the current study: Alexander Kuhn, Torsten Schultz-Fademrecht, Andreas Langer, Ortrud Betz, Regina Ziegler, Heidrun Schott, Sven Bahrenburg, Robert Mader, Douglas McCormick and Raimund Geidobler.


  1. 1.
    Rey L (1962) Progrés récents en lyophilisation. Band 1299, Actualités scientifiques et industrielles, pp 1–196Google Scholar
  2. 2.
    Essig D (1993) Lyophilisation. Wiss Verlag-Ges Stuttgart, Stuttgart, pp 1–158Google Scholar
  3. 3.
    Jennings TA (1999) Lyophilization. Taylor & Francis, Boca Raton, FL, pp 1–664CrossRefGoogle Scholar
  4. 4.
    Wang W (2000) Lyophilization and development of solid protein pharmaceuticals. Int J Pharm 203(1–2):1–60CrossRefGoogle Scholar
  5. 5.
    Nail SL, Chongprasert S (2002) Fundamentals of freeze-drying. In: Nail SL, Akers MJ (eds) Development and manufacture of protein pharmaceuticals, vol 6. Kluwer Academic, New York, pp 281–360CrossRefGoogle Scholar
  6. 6.
    Constantino HR, Pikal MJ (2004) Lyophilisation of biopharmaceuticals. AAPS Press, Arlington, pp 1–686Google Scholar
  7. 7.
    Oetjen H-W, Haseley P (2004) Freeze-drying, 2nd edn. Wiley-VCH, Weinheim, pp 1–394Google Scholar
  8. 8.
    Roy I, Gupta MN (2004) Freeze-drying of proteins: some emerging concerns. Biotechnol Appl Biochem 39:165–177PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Matejtschuk P (2007) Lyophilisation of proteins. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols, Chapter 4, Methods in molecular biology, vol 368, 2nd edn. Humana Press Inc, Totowa, NJ, pp 59–72CrossRefGoogle Scholar
  10. 10.
    Franks F, Auffret T (2009) Freeze-drying of pharmaceuticals and biopharmaceuticals. Principles and practice. RSC Publishing, Cambridge, UK, pp 1–206Google Scholar
  11. 11.
    Rey L, May JC (2010) Freeze drying/lyophilization of pharmaceutical and biological products, vol 206, 3rd edn. Informa Heathcare, London, pp 1–564Google Scholar
  12. 12.
    Varshney D, Singh M (eds) (2015) Lyophilised biologics and vaccines modality-based approaches. Springer, New York, pp 1–401Google Scholar
  13. 13.
    Wolkers WF, Oldenhof H (eds) (2015) Cryopreservation and freeze-drying protocols, methods in molecular biology, vol 1257, 3rd edn. Humana Press, New York, pp 1–509Google Scholar
  14. 14.
    Cilurzo F, Selmin F, Minghetti P, Adami M, Bertoni E, Lauria S, Montanari L (2011) Injectability evaluation: an open issue. AAPS PharmSciTech 12(2):604–609PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hallouët P, Eggers J, Malaquin-Pavan E (2007) L’injection sous-cutanée. Soins Gérontologie 12(65):45–46Google Scholar
  16. 16.
    Frost GL (2007) Recombinant human hyaluronidase (rHuPH20): an enabling platform for subcutaneous drug and fluid administration. Expert Opin Drug Deliv 4(4):427–440PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Tang L, Persky AM, Hochhaus G, Meibohm B (2004) Pharmacokinetic aspects of biotechnology products. J Pharm Sci 93:2184–2204PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Narasimhan C, Mach H, Shameen M (2012) High-dose monoclonal antibodies via the subcutaneouy route: challenges and technical solutions, an industry perspective. Ther Deliv 3(7):889–900PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Shpilberg O, Jackisch C (2013) Subcutaneous administration of rituximab (MabThera) and trastuzumab (Herceptin) using hyaluronidase. Br J Cancer 109:1556–1561PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Leveque D (2014) Subcutaneous administration of anticancer agents. Anticancer Res 34:1579–1586PubMedPubMedCentralGoogle Scholar
  21. 21.
    Jackisch C, Müller V, Maintz C, Hell S, Ataseven B (2014) Subcutaneous administration of monoclonal antibodies in oncology. Geburtshilfe Frauenheilkd 74(4):343–349PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Mathaes R, Koulov A, Joerg S, Mahler HC (2016) Subcutaneous injection volume of biopharmaceuticals—pushing the boundaries (short Survey). J Pharm Sci 105:2255–2259PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kling J (2014) Highly concentrated protein formulations. BioProcess Int 12(5):2–11Google Scholar
  24. 24.
    Gatlin LA, Gatlin CAB (1999) Formulation and administration techniques to minimize injection pain and tissue damage associated with parenteral products. In: Gapta PK, Brazeau GA (eds) Injectable drug development: techniques to reduce pain and irritation. Interpharm Press, Denver, pp 401–425CrossRefGoogle Scholar
  25. 25.
    Dias C, Abosaleem B, Crispino C, Cao B, Shaywitz A (2015) Tolerability of high-volume subcutaneous injections of a viscous placebo buffer: a randomized, crossover study in health subjects. AAPS PharmSciTech 16(5):1101–1107PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Garidel P, Kuhn AB, Schäfer LV, Karow-Zwick AR, Blech M (2017) High-concentration protein formulations: how high is high? Eur J Pharm Biopharm 119:353–360PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Garidel P, Kebbel F (2010) Protein therapeutics and aggregates characterised by photon correlation spectroscopy: an application for high-concentration liquid formulations. BioProcess Int 8(3):38–46Google Scholar
  28. 28.
    Trevino SR, Scholtz JM, Pace CN (2008) Measuring and increasing protein solubility. J Pharm Sci 97:4155–4166PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Bye JW, Platts L, Falconer RJ (2014) Biopharmaceutical liquid formulation: a review of the science of protein stability and solubility in aqueous environments. Biotechnol Lett 36:869–875PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Arakawa T, Timasheff SN (1985) Theory of protein solubility. Methods Enzymol 114:49–77PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Garidel P (2013) Protein solubility from a biochemical, physicochemical and colloidal perspective. Am Pharm Rev. http://wwwamericanpharmaceuticalreviewcom/Featured-Articles/152568-Protein-Solubility-from-a-Biochemical-Physicochemical-and-Colloidal-Perspective/
  32. 32.
    Saal C (2010) Optimising the solubility of research compounds. Am Pharm Rev:12–15Google Scholar
  33. 33.
    Middaugh CR, Tisel WA, Haire RN, Rosenberg A (1979) Determination of the apparent thermodynamic activities of saturated protein solutions. J Biol Chem 254:367–370PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kalonia C, Toprani V, Toth R, Wahome N, Gabel I, Middaugh CR, Volkin DV (2016) Effects of protein conformation, apparent solubility, and protein–protein interactions on the rates and mechanisms of aggregation for an IgG1 monoclonal antibody. J Phys Chem B 120(29):7062–7075PubMedCrossRefGoogle Scholar
  35. 35.
    Yearley EJ, Zarraga IE, Shire SJ, Scherer TM, Gokarn Y, Wagner NJ, Liu Y (2013) Small-angle neutron scattering characterization of monoclonal antibody conformations and interactions at high concentrations. Biophys J 105:720–731PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Shatz W, Hass PE, Mathieu M, Kim HS, Leach K, Zhou M, Crawford Y, Shen A, Wang K, Chang DP, Maia M, Crowell SR, Dickmann L, Scheer JM, Kelley RF (2016) Contribution of antibody hydrodynamic size to vitreal clearance revealed through rabbit studies using a species-matched Fab. Mol Pharm 13:2996–3003PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Weeks ER, Weitz DA (2002) Properties of cage rearrangements observed near the colloidal glass transition. Phys Rev Lett 89(9):4 pages.
  38. 38.
    Pathak JA, Sologuren RR, Narwal R (2013) Do clustering monoclonal antibody solutions really have a concentration dependence of viscosity? Biophys J 104:913–923PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Clark NJ, Zhang H, Krueger S, Lee HJ, Ketchem RR, Kerwin B, Kanapuram SR, Treuheit MJ, McAuley A, Curtis JE (2013) Small-angle neutron scattering study of a monoclonal antibody using free-energy constraints. J Phys Chem B 117:14029–14038PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Rayner LE, Hui GK, Gor J, Heenan RK, Dalby PA, Perkins SJ (2014) The Fab conformations in the solution structure of human immunoglobulin G4 (IgG4) restrict access to its Fc region. Implications for functional activity. J Biol Chem 289(30):20740–20756PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hui GK, Wright DW, Vennard OL, Rayner LE, Pang M, Yeo SC, Gor J, Molyneux K, Barratt J, Perkins SJ (2015) The solution structures of native and patient monomeric human IgA1 reveal asymmetric extended structures: implications for function and IgAN disease. Biochem J 471:167–185PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Padlan EA (1994) Anatomy of the antibody molecule. Mol Immunol 31(3):169–217PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Jacobi A, Enenkel B, Garidel P, Eckermann C, Knappenberger M, Presser I, Kaufmann H (2014) Process development and manufacturing of therapeutic antibodies, Chapter 22. In: Dübel S, Reichert JM (eds) Handbook of therapeutic antibodies, Technologies, vol 1. Wiley-VCH, Weinheim, pp 603–663Google Scholar
  44. 44.
    Shire SJ, Shahrokh Z, Liu J (2004) Challenges in the development of high protein concentration formulations. J Pharm Sci 93(6):1390–1402PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Shire SJ (2009) Formulation and manufacturability of biologics. Curr Opin Biotechnol 20(6):708–714PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Neergaard MS, Kalonia D, Parshad H, Nielsen AD, Møller EH, van de Weert M (2013) Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass – prediction of viscosity through protein-protein-interaction measurements. Eur J Pharm Sci 49:400–410PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Flickinger MC (2013) Downstream Industrial Biotechnology. Wiley, Hoboken, NJ, pp 1–858Google Scholar
  48. 48.
    Donnan FG (1927) Concerning the applicability of thermodynamics to the phenomena of life. J Gen Physiol 8:685–688PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Donnan FG (1932) Die Membrangleichgewichte. Kolloid-Zeitschrift 61:160–167CrossRefGoogle Scholar
  50. 50.
    Loeb J (1921) La cause de l’influence des électrolytes sur certaines propriétés physiques des protéines. Arch Int de Physiol 18(1):521–534Google Scholar
  51. 51.
    Steele A, Arias J (2014) Accounting for the Donnan effect in diafiltration optimisation for high-concentration UFDF applications. BioProcess Int 12(1):50–54Google Scholar
  52. 52.
    Bolton GR, Boesch AW, Basha J, Lacasse DP, Kelley BD, Acharya H (2011) Effect of protein and solution properties on the Donnan effect during the ultrafiltration of proteins. Biotechnol Prog 27:140–152PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Salinas BA, Satish HA, Bishop SM, Harn N, Carpenter JF, Randolph TW (2014) Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation. J Pharm Sci 99(1):82–93CrossRefGoogle Scholar
  54. 54.
    Connolly BD, Petry C, Yadav S, Demeule B, Ciaccio N, Moore JMR, Shire SJ, Gokarn YR (2012) Weak interactions govern the viscosity of concentrated antibody solutions: high throughput analysis using the diffusion interaction parameter. Biophys J 103(1):69–78PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Garidel P, Blume A, Wagner M (2015) Prediction of colloidal stability of high concentration protein formulations. Pharm Dev Technol 20(3):367–374PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Luo H, Lee N, Wang X, Li Y, Schmelzer A, Hunter AK, Pabst T, Wang WK (2017) Liquid-liquid phase separation causes high turbidity and pressure during low pH elution process in Protein A chromatography. J Chromatogr A 1488:57–67PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Almendinger A, Müller R, Huwyler J, Mahler HC, Fischer S (2015) Sterile filtration of highly concentrated protein formulations: impact of protein concentration, formulation composition, and filter material. Pharm Biotechnol 104:3319–3329Google Scholar
  58. 58.
    Shieu W, Torhan SA, Chan E, Hubbard A, Gikanga B, Stauch OB, Maa YF (2014) Filling of high concentration monoclonal antibody formulations into pre-filled syringes: fillingparamter investigation and optimization. PDA J Pharm Sci Technol 68(2):153–163PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Bee JS, Stevenson JL, Mehta B, Svitel J, Pollastrini J, Platz R, Freund E, Carpenter JF, Randolph TW (2009) Response of a concentrated monoclonal antibody formulation to high shear. Biotechnol Bioeng 103(5):939–943CrossRefGoogle Scholar
  60. 60.
    Salinas BA, Sathish HA, Bishop SM, Harn N, Carpenter JF, Randolph TW (2010) Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation. J Pharm Sci 99(1):82–93PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Karow AR, Bahrenburg S, Garidel P (2013) Buffer capacity of biologics--from buffer salts to buffering by antibodies. Biotechnol Prog 29:480–492PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Bahrenburg S, Karow AR, Garidel P (2015) Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications. Biotechnol J 10:610–622PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Burckbuchler V, Mekhloufi G, Paillard Giteau A, Grossiord JL, Huille S, Agnely F (2010) Rheological and syringeability properties of highly concentrated human polyclonal immunoglobulin solutions. Eur J Pharm Biopharm 76:351–356PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Berteau C, Filipe-Santos O, Wang T, Rojas HE, Granger C, Schwarzenbach F (2015) Evaluation of the impact of viscosity, injection volume, and injection flow rate on subcutaneous injection tolerance. Med Devices 8:473–484Google Scholar
  65. 65.
    Thomsen M, Hernandez-Garcia A, Mathiesen J, Poulsen M, Sørensen DN, Tarnow L, Feidenhans R (2014) Model study of the pressure build-up during subcutaneous injection. PLoS One 9(8):e104054PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Doughty DV, Clawson CZ, Lambert W, Subramony JA (2016) Understanding subcutaneous tissue pressure for engineering injection devices for large-volume protein delivery. J Pharm Sci 105:2105–2133PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ravi AD, Sadhna D, Nagpaal D, Chawla L (2015) Needle free injection technology: a complete insight. Int J Pharm Investig 5(4):192–199PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Gupta J, Park S, Bondy B, Felner EI, Prausnitz MR (2011) Infusion pressure and pain during microneedle injection into skin of human subjects. Biomaterials 32(28):6823–6831PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Fry A (2014) Injecting highly viscous drugs. PharmTech 38(11).
  70. 70.
    Werk T, Ludwig IS, Lümkemann J, Mahler HC, Huwyler J, Hafner M (2016) Technology, applications and process challenges of dual chamber systems. J Pharm Sci 105(1):4–9PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Jones LS, Kaufmann A, Middaugh CR (2005) Silicone oil induced aggregation of proteins. J Pharm Sci 94(4):918–927PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Liu L, Ammar DA, Ross LA, Mandava N, Kahook MY, Carpenter JF (2011) Silicone oil microdroplets and protein aggregates in repackaged bevacizumab and ranibizumab: effects of long-term storage and product mishandling. Invest Ophathalmol Vis Sci 52:1023–1034CrossRefGoogle Scholar
  73. 73.
    Li J, Pinnamaneni S, Quan Y, Jaiswal A, Andersson FI, Zhang X (2012) Mechanistic understanding of protein-silicone oil interactions. Pharm Res 29:1689–1697PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Krayukhina E, Tsumoto K, Uchiyama S, Fukui K (2015) Effects of syringe material and silicone oil lubrication on the stability of pharmaceutical proteins. J Pharm Sci 104:527–535PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Saggu M, Patel AR, Koulis T (2017) A random forest approach for counting silicone oil droplets and protein particles in antibody formulations using flow microscopy. Pharm Res 34:479–491PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Jiang Y, Nashed-Samuel Y, Li C, Liu W, Pollastrini J, Mallard D, Wen Z-Q, Fujimori K, Pallitto M, Donahue L, Chu G, Torraca G, Vance A, Mire-Sluis T, Freund E, Davis J, Narhi L (2009) Tungsten-induced protein aggregation: solution behaviour. J Pharm Sci 98:4695–4710PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Liu W, Swift R, Torraca G, Nashed-Samuel Y, Wen Z-Q, Jiang Y, Vance A, Mire-Sluis A, Freund E, Davis J, Narhi L (2010) Root cause analysis of tungsten-induced protein aggregation in pre-filled syringes. PDA J Pharm Sci Technol 64(1):11–19PubMedPubMedCentralGoogle Scholar
  78. 78.
    Bee JS, Nelson SA, Freund E, Carpenter JF, Randolph TW (2009) Precipitation of a monoclonal antibody by soluble tungsten. J Pharm Sci 98(9):3290–3301PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Seidl A, Hainzl O, Richter M, Fischer R, Böhm S, Deitel B, Hartinger M, Windisch J, Casadevall N, London GM, Macdougall I (2012) Tungsten-induced denaturation and aggregation of Epoetin Alfa during primary packaging as a cause of immunogenicity. Pharm Res 29:1451–1467CrossRefGoogle Scholar
  80. 80.
    Warne NW (2011) Development of high concentration protein biopharmaceuticals: the use of platform approaches in formulation development. Eur J Pharm Biopharm 78:208–212PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Wagner M, Reiche K, Blume A, Garidel P (2012) The electrokinetic potential of therapeutic proteins and its modulation: impact on protein stability. Colloids Surf A Physicochem Eng Aspects 415:421–430CrossRefGoogle Scholar
  82. 82.
    Raut AS, Kalonia DS (2015) Liquid-liquid phase separation in a dual variable domain immunoglobulin protein solution: effect of formulation factors and protein-protein interactions. Mol Pharm 12(9):3261–3271PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Raut AS, Kalonia DS (2015) Opalescence in monoclonal antibody solutions and its correlation with intermolecular interactions in dilute and concentrated solutions. J Pharm Sci 104:1263–1274PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Reiche K, Hart J, Blume A, Garidel P (2017) Liquid-liquid phase separation of a monoclonal antibody at low ionic strength: influence of anion charge and concentration. Biophys Chem 220:7–19PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Lin Y-H, Chan HS (2017) Phase Separation and Single-Chain Compactness of Charged Disordered Proteins Are Strongly Correlated. Biophysical J 112(10):2043–2046PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Randolph TW (1997) Phase separation of excipients during lyophilisation: effects on protein stability. J Pharm Sci 86(11):1198–1203PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Heller MC, Carpenter JF, Randolph TW (1997) Manipulation of lyophilisation-induced phase separation: implications for pharmaceutical proteins. Biotechnol Prog 13:590–596PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Padilla AM, Pikal MJ (2011) The study of phase preparation in amorphous freeze-dried systems, Part 2: Investigation of Raman mapping as a tool for studying amorphous phase separation in freeze-dried protein formulations. J Pharm Sci 100(4):1497–1474Google Scholar
  89. 89.
    Pikal MJ (1994) Freeze-drying of proteins. In: Cleland JL, Langer R (eds) Stability, formulation and delivery of peptides and proteins, ACS Symposium series. American Chemical Society, Washington, DC, pp 120–133CrossRefGoogle Scholar
  90. 90.
    Awotwe-Otoo D, Agarabi C, Read EK, Lute S, Brorson KA, Khan MA (2015) Product and process understanding to relate the effect of freezing method on glycation and aggregation of lyophilized monoclonal antibody formulations. Int J Pharm 490(1–2):341–350PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ressing ME, Jiskoot W, Talsma H, van Ingen CW, Beuvery EC, Crommelin DJA (1992) The influence of sucrose, dextran, and hydroxypropyl-β-cyclodextrin as lyoprotectants for a freeze-dried mouse IgG2a monoclonal antibody (MN12). Pharm Res 9(2):266–270PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Meyer JD, Nayar R, Manning MC (2009) Impact of bulking agents on the stability of a lyophilized monoclonal antibody. Eur J Pharm Biopharm 38(1):29–38Google Scholar
  93. 93.
    Park J, Nagapudi K, Vergara C, Ramachander R, Laurence JS, Krishnan S (2013) Effect of pH and excipients on structure, dynamics, and long-term stability of a model IgG1 monoclonal antibody upon freeze-drying. Pharm Res 30(4):968–984CrossRefGoogle Scholar
  94. 94.
    Stärtzel P, Gieseler H, Gieseler M, Abdul-Fattah AM, Adler M, Mahler HC, Goldbach P (2015) Freeze-drying of L-arginine/sucrose-based protein formulations, Part I: Influence of formulation and arginine counter ion on the critical formulation temperature, product performance and protein stability. J Pharm Sci 104(7):2345–2358PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Stärtzel P, Gieseler H, Gieseler M, Abdul-Fattah AM, Adler M, Mahler HC, Goldbach P (2015) Freeze-drying of L-arginine/sucrose-based protein formulations, Part 2: Optimization of formulation design and freeze-drying process conditions for an L-arginine chloride-based protein formulation system. J Pharm Sci 104(12):4241–4256PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Stärtzel P, Gieseler H, Gieseler M, Abdul-Fattah AM, Adler M, Mahler HC, Goldbach P (2016) Mannitol/L-arginine-based formulation systems for freeze drying of protein pharmaceuticals: effect of the L-arginine counter ion and formulation composition on the formulation properties and the physical state of mannitol. J Pharm Sci 105(10):3123–3135PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Matheus S, Friess W, Mahler HC (2006) FTIR and nDSC as analytical tools for high-concentration protein formulations. Pharm Res 23(6):1350–1363PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Garidel P, Bassarab S (2008) Impact of formulation design on stability and quality. In: Lyscon N (ed) Quality for biologics: critical quality attributes, process and change control, production variation, characterisation, impurities and regulatory concerns. Biopharm Knowledge Publishing, London, UK, pp 94–113Google Scholar
  99. 99.
    Garidel P, Schott H (2006) Fourier-transform midinfrared spectroscopy for the analysis and screening of liquid protein formulations. Part 1: Understanding infrared spectroscopy of proteins. BioProcess Int 4(5):40–46Google Scholar
  100. 100.
    Garidel P, Schott H (2006) Fourier-transform midinfrared spectroscopy for the analysis and screening of liquid protein formulations. Part 2: Detailed analysis and applications. BioProcess Int 4(6):48–55Google Scholar
  101. 101.
    Kim J, Qiu J (2014) Quantitation of low concentrations of polysorbates in high protein concentration formulations by solid phase extraction and cobalt-thocyanate derivatisation. Anal Chem 806:144–151Google Scholar
  102. 102.
    Savjani N, Babcock E, Khor HK, Raghani A (2014) Use of ferric thiocyanate derivatization for quantification of polysorbate 80 in high concentration protein formulations. Talanta 130:542–546PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Wuchner K, Büchler J, Spycher R, Dalmonte P, Volkin DB (2010) Development of a microflow digital imaging assay to characterize protein particulates during storage of a high concentration IgG1 monoclonal antibody formulation. J Pharm Sci 99(8):3343–3361PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Saluja A, Badkar AV, Zeng DL, Kalonia DS (2007) Ultrasonic rheology of a monoclonal antibody (IgG2) solution: implications for physical stability of proteins in high concentration formulations. J Pharm Sci 96(12):3181–3195PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Trainor K, Broom A, Meiering EM (2017) Exploring the relationship between protein sequence, structure and solubility. Curr Opin Struct Biol 42:136–146PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Woods JM, Nesta D (2010) Formulation effects on opalescence of a high-concentration mAb. BioProcess Int 10:48–59Google Scholar
  107. 107.
    van der Kant R, Karow-Zwick AR, Van Durme J, Blech M, Gallardo R, Seeliger D, Aßfalg K, Baatsen P, Compernolle G, Gils A, Studts JM, Schulz P, Garidel P, Schymkowitz J, Rousseau F (2017) Prediction and reduction of the aggregation of monoclonal antibodies. J Mol Biol 429(8):1244–1261PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Yearley EJ, Godfrin PD, Perevozchikova T, Zhang H, Falus P, Porcar L, Nagao M, Curtis JE, Gawande P, Taing R, Zarraga IE, Wagner NJ, Liu Y (2014) Observation of small cluster formation in concentrated monoclonal antibody solutions and its implications to solution viscosity. Biophys J 106:1763–1770PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    LeBrun V, Friess W, Bassarab S, Mühlau S, Garidel P (2010) A critical evaluation of self-interaction chromatography as a predictive tool for the assessment of protein-protein interactions in protein formulation development: a case study of a therapeutic monoclonal antibody. Eur J Pharm Biopharm 75(1):16–25CrossRefGoogle Scholar
  110. 110.
    Herhut M, Brandenbusch C, Sadowski G (2016) Modelling and prediction of protein solubility using the second osmotic virial coefficient. Fluid Phase Equilib 411:32–42CrossRefGoogle Scholar
  111. 111.
    Colandene JD, Maldonado LM, Creach AT, Vrettos JS, Goad KG, Spitznagel TM (2007) Lyophilizatin cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent. J Pharm Sci 96(6):1598–1608PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Cao W, Krishnan S, Speed Ricci M, Shih LY, Liu D, Hua Gu J, Jameel F (2013) Rational design of lyophilised high concentration protein formulations-mitigating the challenge of slow reconstitutin with multidisciplinary strategies. Eur J Pharm Biopharm 85:287–293PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Garidel P, Pevestorf B, Bahrenburg S (2015) Stability of buffer-free freeze-dried formulations: a feasibility study of a monoclonal antibody at high protein concentrations. Eur J Pharm Biopharm 97:125–139PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Schersch K, Betz O, Garidel P, Muehlau S, Bassarab S, Winter G (2010) Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins 1: Stability after freeze-drying. J Pharm Sci 99(5):2256–2278PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Schersch K, Betz O, Garidel P, Muehlau S, Bassarab S, Winter G (2010) Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins 2: Stability during storage at elevated temperatures. J Pharm Sci 101(7):2288–2306CrossRefGoogle Scholar
  116. 116.
    Schersch K, Betz O, Garidel P, Muehlau S, Bassarab S, Winter G (2010) Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins 3: Collapse during storage at elevated temperatures. Eur J Pharm Biopharm 85(2):240–252CrossRefGoogle Scholar
  117. 117.
    Chang L, Shepherd D, Sun J, Tang X, Pikal MJ (2005) Effect of sorbitol and residual moisture on the stability of lyophilized antibodies: implications for the mechanism of protein stabilization in the solid state. J Pharm Sci 94(7):1445–1455PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Kasper JC, Friess W (2011) The freezing step in lyophilization: physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur J Pharm Biopharm 78(2):248–263PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Rambhatla S, Ramot R, Bhugra C, Pikal MJ (2004) Heat and mass transfer scale-up issues during freeze drying: II. Control and characterization of the degree of supercooling. AAPS PharmSciTech 5(4):54–62CrossRefGoogle Scholar
  120. 120.
    Searles JA, Carpenter JF, Randolph TW (2001) The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf. J Pharm Sci 90(7):860–871PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    van den Berg L, Rose D (1959) Effect of freezing on the pH and composition of sodium and potassium phosphate solutions: the reciprocal system KH2PO4---Na2HPO4---H2O. Arch Biochem Biophys 81(2):319–329CrossRefGoogle Scholar
  122. 122.
    Konstantinidis AK, Kuu W, Otten L, Nail SL, Sever RR (2011) Controlled nucleation in freeze-drying: effects on pore size in the dried product layer, mass transfer resistance, and primary drying rate. J Pharm Sci 100(8):3453–3470PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Geidobler R, Winter G (2013) Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review. Eur J Pharm Biopharm 85:214–222PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Gasteyer TH, Sever RR, Hunel B, Grinter N, Verdone ML (2007) Lyophilization system and method. US Patent 20070186437A1Google Scholar
  125. 125.
    Awotwe-Otoo D, Agarabi C, Read EK, Lute S, Brorson KA, Khan MA, Shah RB (2013) Impact of controlled ice nucleation on process performance and quality attributes of a lyophilized monoclonal antibody. Int J Pharm 450(1–2):70–78PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Geidobler R, Konrad I, Winter G (2013) Can controlled ice nucleation improve freeze-drying of highly-concentrated protein formulations? J Pharm Sci 102:3915–3919PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Corporate Division Biopharmaceuticals, Process Science, Protein ScienceBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany

Personalised recommendations