# Multidimensional Analyses for Testing Ecological, Ethnobiological, and Conservation Hypotheses

## Abstract

This chapter outlines the commonest multidimensional analysis used in ecology, ethnobiology, and conservation. After mastering how to create a scientific research workflow based on a problem-based platform (Chap. 7, in this book), readers will learn how to visualize complex datasets (e.g., species or ethnospecies lists, several social-political or environmental variables, and so on), and test multivariate hypotheses. We provide a full reproducible example of every analysis discussed in this chapter as an Online Material. We further encourage students and researchers to move from a “description-based multidimensional analysis” (such as using unconstrained ordination, like PCA) to an explicit hypothesis-testing framework that can greatly improve learning and research programs.

## Key words

Data analysis Hypothesis testing Scientific research workflow Ordination## References

- 1.Borcard D, Gillet F, Legendre P (2018) Numerical ecology with R, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
- 2.Gower JC, Legendre P (1986) Metric and euclidean properties of dissimilarity coefficients. J Classif 3:5–48CrossRefGoogle Scholar
- 3.Dolédec S, Chessel D, ter Braak CJF, Champely S (1996) Matching species traits to environmental variables: a new three-table ordination method. Environ Ecol Stat 3:143–166CrossRefGoogle Scholar
- 4.Legendre P, Legendre L (2012) Numerical ecology, 3rd English edn. Elsevier, AmsterdamGoogle Scholar
- 5.Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, ChicagoCrossRefGoogle Scholar
- 6.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MH, Szoecs E, Wagner E (2018) Vegan: community ecology package. R package version 2.5-1. https://CRAN.R-project.org/package=veganGoogle Scholar
- 7.Dray S, Blanchet G, Borcard D, Clappe S, Guenard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner HH (2017) Adespatial: multivariate multiscale spatial analysis. R package version 0.0-9. https://CRAN.R-project.org/package=adespatialGoogle Scholar
- 8.Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20CrossRefGoogle Scholar
- 9.Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
- 10.Legendre P, Borcard D (2018) Box-Cox-chord transformations for community composition data prior to beta diversity analysis. Ecography 41:1–5CrossRefGoogle Scholar
- 11.Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2:559–572CrossRefGoogle Scholar
- 12.Rodrigues A, Bones F, Schneiders A, Oliveira L, Vibrans A, Gasper A (2018) Plant trait dataset for tree-like growth forms species of the subtropical Atlantic Rain Forest in Brazil. Data 3:16CrossRefGoogle Scholar
- 13.Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223CrossRefGoogle Scholar
- 14.Jombart T, Dray S (2010) Adephylo: exploratory analyses for the phylogenetic comparative method. Bioinformatics 26:1907–1909CrossRefGoogle Scholar
- 15.Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338CrossRefGoogle Scholar
- 16.Pavoine S, Dufour AB, Chessel D (2004) From dissimilarities among species to dissimilarities among communities: a double principal coordinate analysis. J Theor Biol 228:523–537CrossRefGoogle Scholar
- 17.Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
- 18.Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems: data exploration. Methods Ecol Evol 1:3–14CrossRefGoogle Scholar
- 19.Hadi AS, Ling RF (1998) Some cautionary notes on the use of principal components regression. Am Stat 52:15–19Google Scholar
- 20.Boaratti AZ, Silva FR (2015) Relationships between environmental gradients and geographic variation in the intraspecific body size of three species of frogs (Anura). Austral Ecol 40:869–9765CrossRefGoogle Scholar
- 21.Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
- 22.Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
- 23.McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297CrossRefGoogle Scholar
- 24.Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693CrossRefGoogle Scholar
- 25.Legendre P, Galzin R, Harmelin-Vivien ML (1997) Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78:547–562Google Scholar
- 26.Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637CrossRefGoogle Scholar
- 27.Lavorel S, Grigulis K, McIntyre S, Williams NSG, Garden D, Dorrough J, Berman S, Quétier F, Thébault A, Bonis A (2007) Assessing functional diversity in the field – methodology matters! Funct Ecol 22:134–147Google Scholar
- 28.Peres-Neto PR, Dray S, ter Braak CJF (2017) Linking trait variation to the environment: critical issues with community-weighted mean correlation resolved by the fourth-corner approach. Ecography 40:806–816CrossRefGoogle Scholar
- 29.ter Braak CJF, Peres-Neto P, Dray S (2017) A critical issue in model-based inference for studying trait-based community assembly and a solution. PeerJ 5:e2885CrossRefGoogle Scholar
- 30.Rigal F, Cardoso P, Lobo JM, Triantis KA, Whittaker RJ, Amorim IR, Borges PAV (2018) Functional traits of indigenous and exotic ground-dwelling arthropods show contrasting responses to land-use change in an oceanic island, Terceira, Azores. Divers Distrib 24:36–47CrossRefGoogle Scholar
- 31.Kleyer M, Dray S, Bello F, Lepš J, Pakeman RJ, Strauss B, Thuiller W, Lavorel S (2012) Assessing species and community functional responses to environmental gradients: which multivariate methods? J Veg Sci 23:805–821CrossRefGoogle Scholar
- 32.Solé-Senan XO, Juárez-Escario A, Conesa JA, Recasens J (2018) Plant species, functional assemblages and partitioning of diversity in a Mediterranean agricultural mosaic landscape. Agric Ecosyst Environ 256:163–172CrossRefGoogle Scholar
- 33.Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1, pp 0–12Google Scholar
- 34.ter Braak CJF (1987) Ordination. In: RHG J, CJF T, OFR V (eds) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, pp 91–173 Pudoc, Wageningen, The Netherlands. Reissued in 1995Google Scholar
- 35.Dray S, Pélissier R, Couteron P, Fortin M, Legendre P, Peres-Neto PR, Bellier E, Bivand R, Blanchet FG, De Cáceres M, Dufour A, Heegaard E, Jombart T, Munoz F, Oksanen J, Thioulouse J, Wagner HH (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr 82:257–275CrossRefGoogle Scholar
- 36.Vasconcelos T, Santos T, Haddad C, Rossa-Feres DC (2010) Climatic variables and altitude as predictors of anuran species richness and number of reproductive modes in Brazil. J Trop Ecol 26:423–432CrossRefGoogle Scholar
- 37.Hecnar SJ, M’Closke RT (1996) Regional dynamics and the status of amphibians. Ecology 77:2091–2097CrossRefGoogle Scholar
- 38.de Cáceres MD, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574CrossRefGoogle Scholar
- 39.Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
- 40.McGeoch MA, Van Rensburg BJ, Botes A (2002) The verification and application of bioindicators: a case study of dung beetles in savanna ecosystem. J Appl Ecol 39:661–672CrossRefGoogle Scholar
- 41.Tejeda-Cruz C, Mehltreter K, Sosa VJ (2008) Indicadores ecológicos multi-taxonómicos. In: Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: Biodiversidad, Manejo y Conservación. INECOL – INE-SEMARNAT, México, pp 271–278Google Scholar
- 42.Roberts DW (2016) labdsv: ordination and multivariate analysis for ecology. R package version 1.8-0. https://CRAN.R-project.org/package=labdsv
- 43.Mayo DG (2018) Statistical inference as severe testing: how to get beyond the statistics wars. Cambridge Univ. Press, CambridgeCrossRefGoogle Scholar
- 44.Taper ML, Lele S (2004) The nature of scientific evidence: statistical, philosophical, and empirical considerations. University of Chicago Press, ChicagoCrossRefGoogle Scholar
- 45.Salsburg D (2002) The lady tasting tea: how statistics revolutionized science in the twentieth century. Holt, New York, NYGoogle Scholar