Advertisement

Evaluation of the Antibacterial and Modulatory Activities of Zootherapeutics

  • Diógenes de Queiroz Dias
  • Débora Lima Sales
  • Felipe Silva Ferreira
  • Izabel Cristina Santiago Lemos
  • Gyllyandeson de Araújo Delmondes
  • Renata Evaristo Rodrigues da Silva
  • José Galberto Martins da Costa
  • Marta Regina Kerntopf
  • Henrique Douglas Melo Coutinho
  • Rômulo Romeu Nóbrega Alves
  • Waltécio de Oliveira Almeida
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Bioprospecting of biotherapeutics focusing on the search for new drugs is still underdeveloped. Consequently, methodological bioprospecting aspects are also scarce. In this chapter, the reader will be exposed to a brief explanation of antibacterial and modulatory activity evaluation of zootherapeutics body fat.

Key words

Zootherapeutics Fatty acids Antibacterial activity Modulatory effect 

References

  1. 1.
    Alves RRN, Rosa IL (2005) Why study the use of animals products in traditional medicine? J Ethnobiol Ethnomed 1:1–5CrossRefGoogle Scholar
  2. 2.
    Raskin I, Ribnicky DM, Komarnytsky S, Ilnic N, Poulev A, Borisjuk N, Brinker A, Moreno DA, Ripoll C, Yakoby N, O’neal JM, Cornwell T, Pastor I, Fridlender B (2002) Plants and human health in the Twenty-First century. Trends Biotechnol 20:522–531CrossRefGoogle Scholar
  3. 3.
    Ragavan S (2008) New paradigms for protection of biodiversity. J Intellect Prop Rig 13:514–522Google Scholar
  4. 4.
    Mahawar MM, Jaroli DP (2008) Traditional zootherapeutic studies in India: a review. J Ethnobiol Ethnomed 4:1–12CrossRefGoogle Scholar
  5. 5.
    Andrade JN, Costa-Neto EM (2005) Primeiro registro da utilização medicinal de recursos pesqueiros na cidade de São Félix, Estado da Bahia, Brasil. Acta Sci Biol Sci 27:177–183Google Scholar
  6. 6.
    Alves RRN, Rosa IL (2007) Zootherapeutic practices among fishing communites in North and Northeast Brazil: a comparison. J Ethnopharmacol 111:82–103CrossRefGoogle Scholar
  7. 7.
    Ferreira FS, Albuquerque UP, Coutinho HDM, Almeida WO, Alves RRN (2012) The trade in medicinal animals in northeastern Brazil. Evid Based Complement Alternat Med 2012:1–20CrossRefGoogle Scholar
  8. 8.
    Alves RRN (2009) Fauna used in popular medicine in Northeast Brazil. J Ethnobiol Ethnomed 5:1–7CrossRefGoogle Scholar
  9. 9.
    Rist S, Dahdouh-Gabas F (2006) Ethnosciences – a step towards the integration of scientific and indigenous forms of knowledge in the management of natural resources for the future. Environ Dev Sustain 8:467–493CrossRefGoogle Scholar
  10. 10.
    Sales DL, Morais-Braga MFB, Santos TL, Machado AJT, Araujo-Filho JA, Dias DQ, Cunha FAB, Saraiva RA, Menezes IRA, Coutinho HDM, Costa JGM, Ferreira FS, Alves RRN, Almeida WO (2017) Antibacterial, modulatory activity of antibiotics and toxicity from Rhinella jimi (Stevaux, 2002) (Anura: Bufonidae) glandular secretions. Biomed Pharmacother 92:544–561CrossRefGoogle Scholar
  11. 11.
    Coutinho HDM, Vasconcellos A, Lima MA, Almeida-Filho GG, Alves RRN (2009) Termite usage associated with antibiotic therapy: enhancement of aminoglycosides antibiotic activity by natural products of Nasutitermes corniger (Motschulsky, 1855). BMC Complement Altern Med 9:35CrossRefGoogle Scholar
  12. 12.
    Hissa DC, Vasconcelos IM, Carvalho AFU, Nogueira VLR, Cascon P, Antunes ASL, Macedo GR, Melo VMM (2008) Novel surfactant proteins are involved in the structure and stability of foam nests from the frog Leptodactylus vastus. J Exp Biol 211:2707–2711CrossRefGoogle Scholar
  13. 13.
    Alves RRN, Alves HN (2011) The faunal drugstore: animal-based remedies used in traditional medicines in Latin America. J Ethnobiol Ethnomed 7:9CrossRefGoogle Scholar
  14. 14.
    Silva MLV, Alves AGC, Almeida AV (2004) A zooterapia no recife (Pernambuco): uma articulação entre as práticas e a história. Biotemas 17:95–116Google Scholar
  15. 15.
    Alves RRN, Rosa IL (2006) From cnidarians to mammals: the use of animals as remedies in fishing communities in NE Brazil. J Ethnopharmacol 107:259–276CrossRefGoogle Scholar
  16. 16.
    Confessor MVA, Mendonça LET, Mourão JS, Alves RRN (2009) Animals to heal animal: ethnoveterinary practices in the semi-arid region, Northeastern Brazil. J Ethnobiol Ethnomed 5:37CrossRefGoogle Scholar
  17. 17.
    Souto WMS, Mourão JS, Barbosa RRD, Alves RRN (2011) Parallels between zooterapeutic practices in ethnoveterinary and human complementary medicine in northeastern Brazil. J Ethnopharmacol 134:753–767CrossRefGoogle Scholar
  18. 18.
    Costa-Neto EM, Alves RRN (2010) Estado da arte da zooterapia popular no Brasil. In: Costa-Neto EM, Alves RRN (eds) Zooterapia: os animais na medicina popular brasileira. Nupeea, Recife, pp 13–55Google Scholar
  19. 19.
    Ferreira FS, Brito SV, Costa JGM, Almeida WO, Coutinho HDM, Alves RRN, Almeida WO (2009) Is the body fato f the lizard Tupinambis merianae effective against bacterial infecctions? J Ethnopharmacol 126:233–237CrossRefGoogle Scholar
  20. 20.
    Dias DQ, Cabral MES, Sales DL, Oliveira OP, Araujo Filho JA, Teles DA, Sousa JGG, Coutinho HDM, Costa JGM, Kerntopf MR, Alves RRN, Almeida WO (2013) Chemical composition and validation of the ethnopharmacological reported antimicrobial activity of the body fat of Phrynops geoffroanus used in traditional medicine. Evid Based Complement Alternat Med 2013:1–4CrossRefGoogle Scholar
  21. 21.
    Oliveira OP, Sales DL, Dias DQ, Cabral MES, Araujo-Filho JA, Teles DA, Sousa JGG, Ribeiro SC, Freitas FRD, Coutinho HDM, Kerntopf MR, Costa JGM, Alves RRN, Almeida WO (2014) Antimicrobial activity and chemical composition of fixed oil extracted from the body fat of the snake Spilotes pullatus. Pharm Biol 52(6):740–744CrossRefGoogle Scholar
  22. 22.
    McCue M (2008) Fatty acids analyses may provide insight into the progression of starvation among squamate reptiles. Comp Biochem Physiol A Mol Integr Physiol 151:239–246CrossRefGoogle Scholar
  23. 23.
    Cabral MES, Dias DQ, Sales DL, Oliveira OP, Araujo Filho JA, Teles DA, Sousa JGG, Coutinho HDM, Costa JGM, Kerntopf MR, Alves RRN, Almeida WO (2013) Evaluations of the antimicrobial activities and chemical compositions of body fat from the amphibians Leptodactylus macrosternum Miranda-Ribeiro (1926) and Leptodactylus vastus Adolf Lutz (1930) in the Northeastern Brazil. Evid Based Complement Alternat Med 2013:1–7CrossRefGoogle Scholar
  24. 24.
    Guedes AMM (2006) Estudo da extração de óleo da polpa de tucumã por CO2 supercrítico. Dissertação (mestrado em Ciência e Tecnologia de Alimentos). Departamento de Engenharia Química e de Alimentos, Universidade Federal do Pará, Pará, BrasilGoogle Scholar
  25. 25.
    Geankopolis CJ (2003) Transport processes and separations process principles, 4th edn. Prentice Hall, NJGoogle Scholar
  26. 26.
    Morreto E, Fett R (1989) Óleos e gorduras vegetais: processo e análises, 2nd edn. UFSC, Florianópolis, BrasilGoogle Scholar
  27. 27.
    Bockisch M (2006) Fats and oil handbook. Champaign, Aocs. In: Oetter M, Regiatano-D’Arce MAB, Spoto MH (eds) Fundamentos de Ciência e Tecnologia de Alimentos. Ed. Manole, São Paulo, pp 127–139Google Scholar
  28. 28.
    Correia IMS (2009) Extração e pirólise do óleo de girassol (Helianthus annusl.) visando a produção de biocombustíveis. Dissertação (Mestrado em Engenharia Química). Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, BrasilGoogle Scholar
  29. 29.
    Hartman L, Lago RCA (1973) Rapid preparation of fatty acid methyl esters from lipids. Lab Pract 22:475–477PubMedGoogle Scholar
  30. 30.
    Ostrosky EA, Mizumoto MK, Lima MEL, Kaneco TM, Nishikawa SO, Freitas BR (2008) Métodos para a avaliação da atividade antimicrobiana e determinação da concentração inibitória minima (CIM) de plantas medicinais. Rev Bras Farmacogn 18(2):301–307CrossRefGoogle Scholar
  31. 31.
    Pinto TJA, Kaneko TM, Ohara MT (2003) Controle biológico de qualidade de produtos farmacêuticos, correlatos e cosméticos, 2nd edn. Atheneu, São Paulo, p 323Google Scholar
  32. 32.
    Penna C, Marino S, Vivot E, Cruañes MC, Muñoz JD, Cruañes J, Ferraro G, Martino V (2001) Antimicrobial activity of argentine plants used in the treatment of infections diseases. Isolation of active compounds from Sebastiana brasiliensis. J Ethnopharmacol 77:37–40CrossRefGoogle Scholar
  33. 33.
    Michelin DC, Moreschi PE, Lima AC, Nascimento GGF, Paganelli MO, Chaud MV (2005) Avaliação da atividade antimicrobiana de extratos vegetais. Rev Bras Farmacogn 15:316–320Google Scholar
  34. 34.
    Leitão SG, Castro O, Fonseca EM, Julião LS, Tavares ES, Leo RRT, Vieira RC, Oliveira DR, Leitão GG, Martino V, Sulsen V, Barbosa YAG, Pinheiro DPG, Silva PEA, Teixeira DF, Lourenço MCS (2006) Screening of Central and South American plant extracts for antimycobacterial activity by the Alamar Blue test. Rev Bras Farmacogn 16:6–11CrossRefGoogle Scholar
  35. 35.
    Lima IO, Oliveira RAG, Lima EO, Farias NMP, Souza EL (2006) Atividade antifúngica de óleos essenciais sobre especies de Candida. Rev Bras Farmacogn 16:197–201CrossRefGoogle Scholar
  36. 36.
    Molnar J, Molnar A, Spengler G, Mandi Y (2004) Infectious plasmid resistance and efflux pump mediated resistance. Acta Microbiol Immunol Hung 51:333–349CrossRefGoogle Scholar
  37. 37.
    Wolfart K, Spengler G, Kawase M, Motohashi N, Molnar J, Viveiros M, Amaral L (2006) Interaction between 3,5-diacetyl-1,4-dihydropyridines and ampicillin, and erythromycin on diferrent E. coli srains. In Vivo 20:367–372PubMedGoogle Scholar
  38. 38.
    NCCLS (Nattinal Committee For Clinical Laboratory Standards) (2003) Methods for dilution antimicrobial for susceptibility test for bacteria that grow aerobically, 6. Wayne, PA: NCCLS Approved Standard M7-A6, 50–62Google Scholar
  39. 39.
    Coutinho HDM (2010) Validation of biological activities and isolation of natural products Coutinho HDM (2010) Validation of biological activities and isolation of natural products of animal origin. In: Costa-Neto EM, RRN A (eds) Zoo Therapy: Animals in Brazilian Popular Medicine, NUPPEA, Recife, pp. 189–198Google Scholar
  40. 40.
    Javadpour MM, Juban MM, LO WC, Bishop SM, Alberty JB, Cowell SM, Becker CL, Mclaughlin ML (1996) De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem 39:3107–3113CrossRefGoogle Scholar
  41. 41.
    Palomino JC, Martin A, Camacho M, Guerra H, Swings J, Portaels F (2002) Resazurin microtiter assay plate: simple and unexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 46:2720–2722CrossRefGoogle Scholar
  42. 42.
    Coutinho HDM, Costa JGM, Lima EO, Falcão-Silva VS, Siqueira-Junior JP (2008) Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L. and chlorpromazine. Chemotherapy 54:328–330CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Diógenes de Queiroz Dias
    • 1
  • Débora Lima Sales
    • 2
  • Felipe Silva Ferreira
    • 3
  • Izabel Cristina Santiago Lemos
    • 1
  • Gyllyandeson de Araújo Delmondes
    • 2
  • Renata Evaristo Rodrigues da Silva
    • 2
  • José Galberto Martins da Costa
    • 2
  • Marta Regina Kerntopf
    • 2
  • Henrique Douglas Melo Coutinho
    • 2
  • Rômulo Romeu Nóbrega Alves
    • 4
  • Waltécio de Oliveira Almeida
    • 2
  1. 1.Federal Rural University of PernambucoRecifeBrazil
  2. 2.Regional University of CaririCratoBrazil
  3. 3.Federal University of San Francisco ValleySenhor do BonfimBrazil
  4. 4.State University of ParaíbaCampina GrandeBrazil

Personalised recommendations