Advertisement

Nanotoxicity pp 353-367 | Cite as

The Overview of Methods of Nanoparticle Exposure Assessment

  • Peng Zhao
  • Yuanbao Zhang
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1894)

Abstract

Nanotechnology is now widely used in industry as well as consumer products, such as electrical devices, cosmetics, medicine, and household appliances. In the life cycle of the nano-products, including production, use, and disposal, nanoparticles may be released to the environment. However, there is no current consensus on the best method for evaluating and characterizing nanoparticle exposure. Therefore, this chapter focuses on the nanoparticle exposure assessment methods and sampling techniques.

Key words

Nanomaterial Nanoparticles Exposure assessment Sampling techniques 

Notes

Acknowledgment

This work was supported by the National Key Research and Development Program of China (2016YFE0115500 and 2016YFC0700602) and general program national science foundation of China (21576023).

References

  1. 1.
    ISO T 27687: 2008. Nanotechnologies-Terminology and definitions for nano-objects-Nanoparticle, nanofibre and nanoplate ISO, GenevaGoogle Scholar
  2. 2.
    ISO T (2007) 80004-1: Nanotechnologies-Vocabulary-Part 1: Core terms. 2007. International Standards Organization, Geneva, SwitzerlandGoogle Scholar
  3. 3.
    Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R (2011) Nanoparticle: An overview of preparation and characterization (2000–2010)Google Scholar
  4. 4.
    Huang C-H, Tai C-Y, Huang C-Y, Tsai C-J, Chen C-W, Chang C-P, Shih T-S (2010) Measurements of respirable dust and nanoparticle concentrations in a titanium dioxide pigment production factory. J Environ Sci Health A 45(10):1227–1233CrossRefGoogle Scholar
  5. 5.
    Eastlake AC, Beaucham C, Martinez KF, Dahm MM, Sparks C, Hodson LL, Geraci CL (2016) Refinement of the nanoparticle emission assessment technique into the nanomaterial exposure assessment technique (NEAT 2.0). J Occup Environ Hyg 13(9):708–717CrossRefGoogle Scholar
  6. 6.
    Maynard AD, Kuempel ED (2005) Airborne nanostructured particles and occupational health. J Nanopart Res 7(6):587–614CrossRefGoogle Scholar
  7. 7.
    BSI P 6699-3 (2010) Nanotechnololgies-Part 3: Guide to assessing airborne exposure in occupational settings relevant to nanomaterials. BSI, LondonGoogle Scholar
  8. 8.
    Grover BD, Kleinman M, Eatough NL, Eatough DJ, Hopke PK, Long RW, Wilson WE, Meyer MB, Ambs JL (2005) Measurement of total PM2. 5 mass (nonvolatile plus semivolatile) with the filter dynamic measurement system tapered element oscillating microbalance monitor. J Geophys Res Atmos 110(D7)Google Scholar
  9. 9.
    Kaluza S, Balderhaar JK, Orthen B, Honnert B, Jankowska E, Pietrowski P, Rosell M, Tanarro C, Tejedor J, Zugasti A (2009) In: Kosk-Bienko J (ed) Workplace exposure to nanoparticles. European Agency for Safety and Health at Work, BilbaoGoogle Scholar
  10. 10.
    Marple V, Olson B, Romay F, Hudak G, Geerts SM, Lundgren D (2014) Second generation micro-orifice uniform deposit impactor, 120 MOUDI-II: design, evaluation, and application to long-term ambient sampling. Aerosol Sci Technol 48(4):427–433CrossRefGoogle Scholar
  11. 11.
    Marjamäki M, Keskinen J, Chen D-R, Pui DY (2000) Performance evaluation of the electrical low-pressure impactor (ELPI). J Aerosol Sci 31(2):249–261CrossRefGoogle Scholar
  12. 12.
    Gu F, Yang J, Bian B, He A (2008) A model for aerosol mass concentration using an optical particle counter. Chin Opt Lett 6(3):214–217CrossRefGoogle Scholar
  13. 13.
    Heim M, Kasper G, Reischl G, Gerhart C (2004) Performance of a new commercial electrical mobility spectrometer. Aerosol Sci Technol 38(S2):3–14CrossRefGoogle Scholar
  14. 14.
    Tritscher T, Beeston M, Zerrath AF, Elzey S, Krinke TJ, Filimundi E, Bischof OF (2013) NanoScan SMPS–A novel, portable nanoparticle sizing and counting instrument. In: Journal of physics: conference series. IOP Publishing, Bristol, p 012061Google Scholar
  15. 15.
    Jeong C-H, Evans GJ (2009) Inter-comparison of a fast mobility particle sizer and a scanning mobility particle sizer incorporating an ultrafine water-based condensation particle counter. Aerosol Sci Technol 43(4):364–373CrossRefGoogle Scholar
  16. 16.
    Fissan H, Neumann S, Trampe A, Pui D, Shin W (2006) Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. In: Nanotechnology and occupational health. Springer, New York, pp 53–59Google Scholar
  17. 17.
    Shin W, Pui D, Fissan H, Neumann S, Trampe A (2006) Calibration and numerical simulation of nanoparticle surface area monitor (TSI model 3550 NSAM). In: Nanotechnology and occupational health. Springer, New York, pp 61–69Google Scholar
  18. 18.
    ISO T (2007) 27628. Workplace atmospheres—Ultrafine, nanoparticle and nanostructured aerosols—inhalation exposure characterization and assessment, ISO, GenevaGoogle Scholar
  19. 19.
    Eastlake A, Hodson L, Geraci C, Crawford C (2012) A critical evaluation of material safety data sheets (MSDSs) for engineered nanomaterials. Chem Health Saf 19(5):1–8CrossRefGoogle Scholar
  20. 20.
    Kittelson DB, Watts WF, Johnson JP (2004) Nanoparticle emissions on Minnesota highways. Atmos Environ 38(1):9–19CrossRefGoogle Scholar
  21. 21.
    Lee JH, Ahn K, Kim SM, Jeon KS, Lee JS, Yu IJ (2012) Continuous 3-day exposure assessment of workplace manufacturing silver nanoparticles. J Nanopart Res 14(9):1134CrossRefGoogle Scholar
  22. 22.
    Methner M, Hodson L, Geraci C (2010) Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials—Part A. J Occup Environ Hyg 7(3):127–132CrossRefGoogle Scholar
  23. 23.
    Tsuji JS, Maynard AD, Howard PC, James JT, C-w L, Warheit DB, Santamaria AB (2005) Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci 89(1):42–50CrossRefGoogle Scholar
  24. 24.
    Ham S, Yoon C, Lee E, Lee K, Park D, Chung E, Kim P, Lee B (2012) Task-based exposure assessment of nanoparticles in the workplace. J Nanopart Res 14(9):1126CrossRefGoogle Scholar
  25. 25.
    Li W, Shao L, Wang Z, Shen R, Yang S, Tang U (2010) Size, composition, and mixing state of individual aerosol particles in a South China coastal city. J Environ Sci 22(4):561–569CrossRefGoogle Scholar
  26. 26.
    Duchaine C, Thorne PS, Mériaux A, Grimard Y, Whitten P, Cormier Y (2001) Comparison of endotoxin exposure assessment by bioaerosol impinger and filter-sampling methods. Appl Environ Microbiol 67(6):2775–2780CrossRefGoogle Scholar
  27. 27.
    Maynard AD, Aitken RJ (2007) Assessing exposure to airborne nanomaterials: current abilities and future requirements. Nanotoxicology 1(1):26–41CrossRefGoogle Scholar
  28. 28.
    Brouwer DH, Gijsbers JH, Lurvink MW (2004) Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies. Ann Occup Hyg 48(5):439–453PubMedGoogle Scholar
  29. 29.
    Chen X, Balasubramanian R, Zhu Q, Behera SN, Bo D, Huang X, Xie H, Cheng J (2016) Characteristics of atmospheric particulate mercury in size-fractionated particles during haze days in shanghai. Atmos Environ 131:400–408CrossRefGoogle Scholar
  30. 30.
    R’mili B, Le Bihan OL, Dutouquet C, Aguerre-Charriol O, Frejafon E (2013) Particle sampling by TEM grid filtration. Aerosol Sci Technol 47(7):767–775CrossRefGoogle Scholar
  31. 31.
    Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839CrossRefGoogle Scholar
  32. 32.
    Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90(2):296–303CrossRefGoogle Scholar
  33. 33.
    Morawska L, He C, Hitchins J, Mengersen K, Gilbert D (2003) Characteristics of particle number and mass concentrations in residential houses in Brisbane, Australia. Atmos Environ 37(30):4195–4203CrossRefGoogle Scholar
  34. 34.
    Symonds JP, Reavell KSJ, Olfert JS, Campbell BW, Swift SJ (2007) Diesel soot mass calculation in real-time with a differential mobility spectrometer. J Aerosol Sci 38(1):52–68CrossRefGoogle Scholar
  35. 35.
    Lee JH, Kwon M, Ji JH, Kang CS, Ahn KH, Han JH, Yu IJ (2011) Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Inhal Toxicol 23(4):226–236CrossRefGoogle Scholar
  36. 36.
    Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN, Lee S-B, Ji JH, Cho MH, Yu IJ (2008) Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol 20(8):741–749CrossRefGoogle Scholar
  37. 37.
    Heitbrink WA, Evans DE, Peters TM, Slavin TJ (2007) Characterization and mapping of very fine particles in an engine machining and assembly facility. J Occup Environ Hyg 4(5):341–351CrossRefGoogle Scholar
  38. 38.
    Evans DE, Heitbrink WA, Slavin TJ, Peters TM (2007) Ultrafine and respirable particles in an automotive grey iron foundry. Ann Occup Hyg 52(1):9–21CrossRefGoogle Scholar
  39. 39.
    Ji JH, Jung JH, Kim SS, Yoon J-U, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS (2007) Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 19(10):857–871CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Peng Zhao
    • 1
  • Yuanbao Zhang
    • 1
  1. 1.Key Laboratory of Occupational Safety and HealthBeijing Municipal Institute of Labour ProtectionBeijingPeople’s Republic of China

Personalised recommendations