Advertisement

Visualizing HIPPO Signaling Components in Mouse Early Embryonic Development

  • Tristan Frum
  • Amy RalstonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1893)

Abstract

The HIPPO signaling pathway plays an early and essential role in mammalian embryogenesis. The earliest known roles for HIPPO signaling during mouse development include segregating fetal and extraembryonic lineages and establishing the pluripotent progenitors of embryonic stem (ES) cells. In the mouse early embryo, HIPPO signaling responds to multiple cell biological inputs, including cell polarization, cytoskeleton, and cell environment, to influence gene expression and the first cell fate decisions in development. Methods to monitor and manipulate HIPPO signaling in the mouse early embryo are fundamental to discovering mechanisms regulating pluripotency in vivo, but properties of the early embryo, such as small cell number and spherical architecture, pose unique challenges for signaling pathway analysis. Here, we share approaches for visualizing HIPPO signaling in mouse early embryos. In addition, these methods can be applied to visualize HIPPO signaling in other spherical or cystic structures comprised of relatively few cells, such as organoids, or for the examination of other signaling pathways in these contexts.

Key words

Cell polarity Stem cells Infertility Organoids Single cell Confocal 

Notes

Acknowledgments

Work in our lab is supported by National Institutes of Health grant R01 GM104009 and the James K. Billman, Jr., M.D. Endowment Fund.

References

  1. 1.
    Fu V, Plouffe SW, Guan KL (2018) The Hippo pathway in organ development, homeostasis, and regeneration. Curr Opin Cell Biol 49:99–107.  https://doi.org/10.1016/j.ceb.2017.12.012 CrossRefGoogle Scholar
  2. 2.
    Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163(4):811–828.  https://doi.org/10.1016/j.cell.2015.10.044 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13(4):246–257.  https://doi.org/10.1038/nrc3458 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Johnson R, Halder G (2014) The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 13(1):63–79.  https://doi.org/10.1038/nrd4161 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pan D (2010) The hippo signaling pathway in development and cancer. Dev Cell 19(4):491–505.  https://doi.org/10.1016/j.devcel.2010.09.011 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sharif AAD, Hergovich A (2018) The NDR/LATS protein kinases in immunology and cancer biology. Semin Cancer Biol 48:104–114.  https://doi.org/10.1016/j.semcancer.2017.04.010 CrossRefPubMedGoogle Scholar
  7. 7.
    Yimlamai D, Fowl BH, Camargo FD (2015) Emerging evidence on the role of the Hippo/YAP pathway in liver physiology and cancer. J Hepatol 63(6):1491–1501.  https://doi.org/10.1016/j.jhep.2015.07.008 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zanconato F, Cordenonsi M, Piccolo S (2016) YAP/TAZ at the roots of cancer. Cancer Cell 29(6):783–803.  https://doi.org/10.1016/j.ccell.2016.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rossant J, Lis WT (1979) Potential of isolated mouse inner cell masses to form trophectoderm derivatives in vivo. Dev Biol 70(1):255–261CrossRefGoogle Scholar
  10. 10.
    Suwinska A, Czolowska R, Ozdzenski W, Tarkowski AK (2008) Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos. Dev Biol 322(1):133–144.  https://doi.org/10.1016/j.ydbio.2008.07.019 CrossRefPubMedGoogle Scholar
  11. 11.
    Tarkowski AK, Suwinska A, Czolowska R, Ozdzenski W (2010) Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice. Dev Biol 348(2):190–198.  https://doi.org/10.1016/j.ydbio.2010.09.022 CrossRefPubMedGoogle Scholar
  12. 12.
    McDole K, Xiong Y, Iglesias PA, Zheng Y (2011) Lineage mapping the pre-implantation mouse embryo by two-photon microscopy, new insights into the segregation of cell fates. Dev Biol 355(2):239–249.  https://doi.org/10.1016/j.ydbio.2011.04.024 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Toyooka Y, Oka S, Fujimori T (2016) Early preimplantation cells expressing Cdx2 exhibit plasticity of specification to TE and ICM lineages through positional changes. Dev Biol 411(1):50–60.  https://doi.org/10.1016/j.ydbio.2016.01.011 CrossRefPubMedGoogle Scholar
  14. 14.
    Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, Makita R, Kurihara H, Morin-Kensicki EM, Nojima H, Rossant J, Nakao K, Niwa H, Sasaki H (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16(3):398–410.  https://doi.org/10.1016/j.devcel.2009.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kono K, Tamashiro DA, Alarcon VB (2014) Inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Dev Biol 394(1):142–155.  https://doi.org/10.1016/j.ydbio.2014.06.023 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cockburn K, Biechele S, Garner J, Rossant J (2013) The Hippo pathway member Nf2 is required for inner cell mass specification. Curr Biol 23(13):1195–1201.  https://doi.org/10.1016/j.cub.2013.05.044 CrossRefPubMedGoogle Scholar
  17. 17.
    Hirate Y, Hirahara S, Inoue K, Suzuki A, Alarcon VB, Akimoto K, Hirai T, Hara T, Adachi M, Chida K, Ohno S, Marikawa Y, Nakao K, Shimono A, Sasaki H (2013) Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol 23(13):1181–1194.  https://doi.org/10.1016/j.cub.2013.05.014 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Leung CY, Zernicka-Goetz M (2013) Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms. Nat Commun 4:2251.  https://doi.org/10.1038/ncomms3251 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Maitre JL, Turlier H, Illukkumbura R, Eismann B, Niwayama R, Nedelec F, Hiiragi T (2016) Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536(7616):344–348.  https://doi.org/10.1038/nature18958 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ralston A, Cox BJ, Nishioka N, Sasaki H, Chea E, Rugg-Gunn P, Guo G, Robson P, Draper JS, Rossant J (2010) Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137(3):395–403.  https://doi.org/10.1242/dev.038828 CrossRefGoogle Scholar
  21. 21.
    Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, Nakao K, Sasaki H (2008) Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125(3–4):270–283.  https://doi.org/10.1016/j.mod.2007.11.002 CrossRefGoogle Scholar
  22. 22.
    Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132(9):2093–2102.  https://doi.org/10.1242/dev.01801 CrossRefPubMedGoogle Scholar
  23. 23.
    Wicklow E, Blij S, Frum T, Hirate Y, Lang RA, Sasaki H, Ralston A (2014) HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst. PLoS Genet 10(10):e1004618.  https://doi.org/10.1371/journal.pgen.1004618 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17(1):126–140.  https://doi.org/10.1101/gad.224503 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Home P, Ray S, Dutta D, Bronshteyn I, Larson M, Paul S (2009) GATA3 is selectively expressed in the trophectoderm of peri-implantation embryo and directly regulates Cdx2 gene expression. J Biol Chem 284(42):28729–28737.  https://doi.org/10.1074/jbc.M109.016840 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ma GT, Roth ME, Groskopf JC, Tsai FY, Orkin SH, Grosveld F, Engel JD, Linzer DI (1997) GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo. Development 124(4):907–914PubMedGoogle Scholar
  27. 27.
    Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, Chinnaiyan A, Israel MA, Goldstein LS, Abujarour R, Ding S, Guan KL (2010) The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev 24(11):1106–1118.  https://doi.org/10.1101/gad.1903310 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Behringer R, Gertsenstein M, Nagy KV, Nagy A (2016) Selecting female mice in estrus and checking plugs. Cold Spring Harb Protoc 2016(8).  https://doi.org/10.1101/pdb.prot092387 CrossRefGoogle Scholar
  29. 29.
    Behringer R, Gertsenstein M, Nagy KV, Nagy A (2014) Manipulating the mouse embryo: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations