Advertisement

MST1/2 Kinase Assays Using Recombinant Proteins

  • Marta Gomez
  • Yavuz Kulaberoglu
  • Alexander HergovichEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1893)

Abstract

The Hippo tumor suppressor pathway is fundamental to the coordination of death, growth, proliferation, and differentiation on the cellular level. At the molecular level, a highly conserved Hippo core cassette is central for the regulation of effector activities such as the co-transcriptional activity of YAP. In particular, the mammalian MST1/2 serine/threonine protein kinases (termed Hippo kinase in Drosophila melanogaster) can act as central signal transducers as part of the Hippo core cassette. In this chapter we describe in vitro kinase assays using recombinant MST1/2 kinases and recombinant MST1/2 kinase substrate.

Key words

The Hippo pathway Serine/threonine protein kinases Kinase assays Recombinant kinase substrates MST1 STK4 MST2 STK3 Hippo kinase 

Notes

Acknowledgments

The Hergovich laboratory was supported by the Wellcome Trust (090090/Z/09/Z), BBSRC (BB/I021248/1), Worldwide Cancer Research (AICR; 11-0634), UCL Cancer Research UK Centre and the National Institute for Health Research University College London Hospitals Biomedical Research Centre.

References

  1. 1.
    Johnson R, Halder G (2014) The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 13(1):63–79.  https://doi.org/10.1038/nrd4161 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163(4):811–828.  https://doi.org/10.1016/j.cell.2015.10.044 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Meng Z, Moroishi T, Guan KL (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30(1):1–17.  https://doi.org/10.1101/gad.274027.115 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Irvine KD, Harvey KF (2015) Control of organ growth by patterning and hippo signaling in Drosophila. Cold Spring Harb Perspect Biol 7(6):a019224CrossRefGoogle Scholar
  5. 5.
    Sun S, Irvine KD (2016) Cellular organization and cytoskeletal regulation of the Hippo signaling network. Trends Cell Biol 26(9):694–704CrossRefGoogle Scholar
  6. 6.
    Pan D (2010) The hippo signaling pathway in development and cancer. Dev Cell 19(4):491–505CrossRefGoogle Scholar
  7. 7.
    Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13(4):246–257.  https://doi.org/10.1038/nrc3458 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hoa L, Kulaberoglu Y, Gundogdu R, Cook D, Mavis M, Gomez M, Gomez V, Hergovich A (2016) The characterisation of LATS2 kinase regulation in Hippo-YAP signalling. Cell Signal 28(5):488–497.  https://doi.org/10.1016/j.cellsig.2016.02.012 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Praskova M, Xia F, Avruch J (2008) MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol 18(5):311–321.  https://doi.org/10.1016/j.cub.2008.02.006 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ni L, Zheng Y, Hara M, Pan D, Luo X (2015) Structural basis for Mob1-dependent activation of the core Mst-Lats kinase cascade in Hippo signaling. Genes Dev 29(13):1416–1431.  https://doi.org/10.1101/gad.264929.115 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kim SY, Tachioka Y, Mori T, Hakoshima T (2016) Structural basis for autoinhibition and its relief of MOB1 in the Hippo pathway. Sci Rep 6:28488.  https://doi.org/10.1038/srep28488 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Couzens AL, Xiong S, Knight JD, Mao DY, Guettler S, Picaud S, Kurinov I, Filippakopoulos P, Sicheri F, Gingras A-C (2017) MOB1 mediated phospho-recognition in the core mammalian Hippo pathway. Mol Cell Proteomics 16(6):1098–1110CrossRefGoogle Scholar
  13. 13.
    Xiong S, Couzens AL, Kean MJ, Mao DY, Guettler S, Kurinov I, Gingras A-C, Sicheri F (2017) Regulation of protein interactions by Mps One Binder (MOB1) phosphorylation. Mol Cell Proteomics 16(6):1111–1125CrossRefGoogle Scholar
  14. 14.
    Kulaberoglu Y, Lin K, Holder M, Gai Z, Gomez M, Assefa Shifa B, Mavis M, Hoa L, Sharif AAD, Lujan C, Smith ESJ, Bjedov I, Tapon N, Wu G, Hergovich A (2017) Stable MOB1 interaction with Hippo/MST is not essential for development and tissue growth control. Nat Commun 8(1):695.  https://doi.org/10.1038/s41467-017-00795-y CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vrabioiu AM, Struhl G (2015) Fat/Dachsous signaling promotes Drosophila wing growth by regulating the conformational state of the NDR kinase Warts. Dev Cell 35(6):737–749CrossRefGoogle Scholar
  16. 16.
    Zanconato F, Cordenonsi M, Piccolo S (2016) YAP/TAZ at the roots of cancer. Cancer Cell 29(6):783–803CrossRefGoogle Scholar
  17. 17.
    Hergovich A (2016) The roles of ndr protein kinases in hippo signalling. Genes 7(5):21CrossRefGoogle Scholar
  18. 18.
    Zhang L, Tang F, Terracciano L, Hynx D, Kohler R, Bichet S, Hess D, Cron P, Hemmings BA, Hergovich A (2015) NDR functions as a physiological YAP1 kinase in the intestinal epithelium. Curr Biol 25(3):296–305CrossRefGoogle Scholar
  19. 19.
    Hergovich A (2011) MOB control: reviewing a conserved family of kinase regulators. Cell Signal 23(9):1433–1440.  https://doi.org/10.1016/j.cellsig.2011.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sharif AA, Hergovich A (2017) The NDR/LATS protein kinases in immunology and cancer biology. In: Seminars in cancer biology. Elsevier.Google Scholar
  21. 21.
    Galan JA, Avruch J (2016) MST1/MST2 protein kinases: regulation and physiologic roles. Biochemistry 55(39):5507–5519CrossRefGoogle Scholar
  22. 22.
    Qin F, Tian J, Zhou D, Chen L (2013) Mst1 and Mst2 kinases: regulations and diseases. Cell Biosci 3(1):31CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Marta Gomez
    • 1
  • Yavuz Kulaberoglu
    • 1
    • 2
  • Alexander Hergovich
    • 3
    Email author
  1. 1.University College London Cancer InstituteLondonUK
  2. 2.Department of PharmacologyUniversity of CambridgeCambridgeUK
  3. 3.Cancer InstituteUniversity College LondonLondonUK

Personalised recommendations