Drosophila Genetics: The Power of Genetic Mosaic Approaches

  • Mardelle AtkinsEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1893)


Drosophila melanogaster has been a central player in the discovery of the Hippo pathway and in understanding its in vivo functions. From a technique standpoint, the Flp-FRT system for the generation of genetic mosaics has been a principle tool. It has broadly been used in the discovery of Hippo pathway members in mutagenesis screens, in the analysis of target gene expression, and in genetic epistasis. Here we briefly introduce this tool, summarize its use in the Hippo pathway field, and provide a protocol for the generation of Flp-FRT clones in imaginal discs with dissection and staining for reporter gene expression to characterize candidate Hippo pathway genes.

Key words

Drosophila Hippo signaling Mitotic clones Protocol Reporter analysis Larval dissection 


  1. 1.
    Rong YS, Golic KG (2003) The homologous chromosome is an effective template for the repair of mitotic DNA double-strand breaks in Drosophila. Genetics 165:1831–1842PubMedPubMedCentralGoogle Scholar
  2. 2.
    Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59:499–509CrossRefGoogle Scholar
  3. 3.
    Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117:1223–1237PubMedGoogle Scholar
  4. 4.
    Germani F, Bergantinos C, Johnston L (2018) Mosaic analysis in Drosophila. Genetics 208:473–490. CrossRefPubMedGoogle Scholar
  5. 5.
    Xu T, Wang W, Zhang S et al (1995) Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121:1053–1063PubMedGoogle Scholar
  6. 6.
    Justice RW, Zilian O, Woods DF et al (1995) The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9:534–546CrossRefGoogle Scholar
  7. 7.
    Kango-Singh M, Nolo R, Tao C et al (2002) Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129:5719–5730CrossRefGoogle Scholar
  8. 8.
    Tapon N, Harvey KF, Bell DW et al (2002) salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110:467–478. CrossRefPubMedGoogle Scholar
  9. 9.
    Harvey KF, Pfleger CM, Hariharan IK (2003) The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114:457–467CrossRefGoogle Scholar
  10. 10.
    Jia J, Zhang W, Wang B et al (2003) The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev 17:2514–2519. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Udan RS, Kango-Singh M, Nolo R et al (2003) Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 5:914–920. CrossRefPubMedGoogle Scholar
  12. 12.
    Wu S, Huang J, Dong J, Pan D (2003) Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114:445–456. CrossRefPubMedGoogle Scholar
  13. 13.
    Pantalacci S, Tapon N, Léopold P (2003) The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 5:921–927. CrossRefPubMedGoogle Scholar
  14. 14.
    Hamaratoglu F, Willecke M, Kango-Singh M et al (2006) The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8:27–36. CrossRefPubMedGoogle Scholar
  15. 15.
    Genevet A, Wehr M, Brain R et al (2010) Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell 18:300–308. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ling C, Zheng Y, Yin F et al (2010) The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc Natl Acad Sci U S A 107:10532–10537. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yu J, Zheng Y, Dong J et al (2010) Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell 18:288–299. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Willecke M, Hamaratoglu F, Kango-Singh M et al (2006) The fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr Biol 16:2090–2100. CrossRefPubMedGoogle Scholar
  19. 19.
    Silva E, Tsatskis Y, Gardano L et al (2006) The tumor-suppressor gene fat controls tissue growth upstream of expanded in the hippo signaling pathway. Curr Biol 16:2081–2089. CrossRefPubMedGoogle Scholar
  20. 20.
    He Y, Emoto K, Fang X et al (2005) Drosophila Mob family proteins interact with the related tricornered (Trc) and warts (Wts) kinases. Mol Biol Cell 16:4139–4152. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lai Z-C, Wei X, Shimizu T et al (2005) Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120:675–685. CrossRefPubMedGoogle Scholar
  22. 22.
    Bennett FC, Harvey KF (2006) Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr Biol 16:2101–2110. CrossRefPubMedGoogle Scholar
  23. 23.
    Huang J, Wu S, Barrera J et al (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122:421–434. CrossRefPubMedGoogle Scholar
  24. 24.
    Nolo R, Morrison CM, Tao C et al (2006) The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol 16:1895–1904. CrossRefPubMedGoogle Scholar
  25. 25.
    Thompson B, Cohen S (2006) The Hippo Pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126:767–774. CrossRefPubMedGoogle Scholar
  26. 26.
    Neto-Silva RM, de Beco S, Johnston LA (2010) Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of Yap. Dev Cell 19:507–520. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Katsukawa M, Ohsawa S, Zhang L et al (2018) Serpin facilitates tumor-suppressive cell competition by blocking toll-mediated Yki activation in Drosophila. Curr Biol 28:1756–1767.e6. CrossRefPubMedGoogle Scholar
  28. 28.
    Suijkerbuijk SJ, Kolahgar G, Kucinski I, Piddini E (2016) Cell competition drives the growth of intestinal adenomas in Drosophila. Curr Biol 26:428–438. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Menéndez J, Pérez-Garijo A, Calleja M, Morata G (2010) A tumor-suppressing mechanism in Drosophila involving cell competition and the Hippo pathway. Proc Natl Acad Sci U S A 107:14651–14656. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yang C-CC, Graves HK, Moya IM et al (2015) Differential regulation of the Hippo pathway by adherens junctions and apical-basal cell polarity modules. Proc Natl Acad Sci U S A 112:1785–1790. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Chen C-LL, Schroeder MC, Kango-Singh M et al (2012) Tumor suppression by cell competition through regulation of the Hippo pathway. Proc Natl Acad Sci U S A 109:484–489. CrossRefPubMedGoogle Scholar
  32. 32.
    Hafezi Y, Bosch JA, Hariharan IK (2012) Differences in levels of the transmembrane protein Crumbs can influence cell survival at clonal boundaries. Dev Biol 368:358–369. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tyler DM, Li W, Zhuo N et al (2007) Genes affecting cell competition in Drosophila. Genetics 175:643–657. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Robinson BS, Huang J, Hong Y, Moberg KH (2010) Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr Biol 20:582–590. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Simon MA, Xu A, Ishikawa HO, Irvine KD (2010) Modulation of fat:dachsous binding by the cadherin domain kinase four-jointed. Curr Biol 20:811–817. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Roote J, Prokop A (2013) How to design a genetic mating scheme: a basic training package for Drosophila genetics. G3 (Bethesda) 3:353–358. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesSam Houston State UniversityHuntsvilleUSA

Personalised recommendations