Regulation of YAP/TAZ Activity by Mechanical Cues: An Experimental Overview

  • Sirio DupontEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1893)


YAP/TAZ activity is regulated by a complex network of signals that include the Hippo pathway, cell polarity complexes, and signaling receptors of the RTK, GPCR, and WNT pathways and by a seamlessly expanding number of intracellular cues including energy and mevalonate metabolism. Among these inputs, we here concentrate on mechanical cues embedded in the extracellular matrix (ECM) microenvironment, which are key regulators of YAP/TAZ activity. We review the techniques that have been used to study mechano-regulation of YAP/TAZ, including conceptual and practical considerations on how these experiments should be designed and controlled. Finally, we briefly review the most appropriate techniques to monitor YAP/TAZ activity in these experiments and their significance to study the mechanisms linking YAP/TAZ to mechanical cues.

Key words

YAP/TAZ Hippo Mechanical cue Mechano-regulation Mechanotransduction 


  1. 1.
    Piccolo S, Dupont S, Cordenonsi M (2014) The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 94:1287–1312. CrossRefPubMedGoogle Scholar
  2. 2.
    Halder G, Dupont S, Piccolo S (2012) Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 13:591–600. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dupont S (2016) Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res 343:42–53. CrossRefPubMedGoogle Scholar
  4. 4.
    Eyckmans J, Boudou T, Yu X, Chen CS (2011) A Hitchhiker’s guide to mechanobiology. Dev Cell 21:35–47. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tang Y, Rowe RG, Botvinick EL, Kurup A, Putnam AJ, Seiki M et al (2013) MT1-MMP-dependent control of skeletal stem cell commitment via a β1-integrin/YAP/TAZ signaling axis. Dev Cell 25:402–416. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME, Ordóñez-Morán P et al (2016) Designer matrices for intestinal stem cell and organoid culture. Nature 539:560. CrossRefPubMedGoogle Scholar
  7. 7.
    Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N et al (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154:1047–1059. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schwartz MA, Chen CS (2013) Cell biology. Deconstructing dimensionality, Science (New York, NY) 339:402–404. CrossRefGoogle Scholar
  9. 9.
    Nelson CM, VanDuijn MM, Inman JL, Fletcher DA, Bissell MJ (2006) Tissue geometry determines sites of mammary branching morphogenesis in Organotypic cultures. Science (New York, NY) 314:298–300. CrossRefGoogle Scholar
  10. 10.
    Folkman J, Moscona A (1978) Role of cell shape in growth control. Nature 273:345–349CrossRefGoogle Scholar
  11. 11.
    Mooney D, Hansen L, Vacanti J, Langer R, Farmer S, Ingber D (1992) Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J Cell Physiol 151:497–505. CrossRefPubMedGoogle Scholar
  12. 12.
    Ingber DE (1990) Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc Natl Acad Sci U S A 87:3579–3583CrossRefGoogle Scholar
  13. 13.
    Roskelley CD, Desprez PY, Bissell MJ (1994) Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc Natl Acad Sci U S A 91:12378–12382CrossRefGoogle Scholar
  14. 14.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science (New York, NY) 276:1425–1428CrossRefGoogle Scholar
  15. 15.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495. CrossRefPubMedGoogle Scholar
  16. 16.
    Watt FM, Jordan PW, O'Neill CH (1988) Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc Natl Acad Sci U S A 85:5576–5580CrossRefGoogle Scholar
  17. 17.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. CrossRefGoogle Scholar
  18. 18.
    Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA et al (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci U S A 102:11594–11599. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Malinverno C, Corallino S, Giavazzi F, Bergert M, Li Q, Leoni M et al (2017) Endocytic reawakening of motility in jammed epithelia. Nat Mater 16:587–596. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J et al (2007) Inactivation of YAP oncoprotein by the hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21:2747–2761. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Puliafito A, Hufnagel L, Neveu P, Streichan S, Sigal A, Fygenson DK et al (2012) Collective and single cell behavior in epithelial contact inhibition. Proc Natl Acad Sci 109:739–744. CrossRefPubMedGoogle Scholar
  23. 23.
    Wada K-I, Itoga K, Okano T, Yonemura S, Sasaki H (2011) Hippo pathway regulation by cell morphology and stress fibers. Development 138:3907–3914. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Benham-Pyle BW, Pruitt BL, Nelson WJ (2015) Mechanical strain induces E-cadherin-dependent Yap1 and -catenin activation to drive cell cycle entry. Science (New York, NY) 348:1024–1027. CrossRefGoogle Scholar
  25. 25.
    Zhou D, Conrad C, Xia F, Park J-S, Payer B, Yin Y et al (2009) Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16:425–438. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Silvis MR, Kreger BT, Lien W-H, Klezovitch O, Rudakova GM, Camargo FD et al (2011) α-Catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci Signal 4:ra33. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D et al (2011) Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144:782–795. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C et al (2011) The hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147:759–772. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Szymaniak AD, Mahoney JE, Cardoso WV, Varelas X (2015) Crumbs3-mediated polarity directs airway epithelial cell fate through the Hippo pathway effector Yap. Dev Cell 34:283–296. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lv X-B, Liu C-Y, Wang Z, Sun Y-P, Xiong Y, Lei Q-Y et al (2015) PARD3 induces TAZ activation and cell growth by promoting LATS1 and PP1 interaction. EMBO Rep 16:975. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Huang H-L, Wang S, Yin M-X, Dong L, Wang C, Wu W et al (2013) Par-1 regulates tissue growth by influencing hippo phosphorylation status and hippo-Salvador association. PLoS Biol 11:e1001620. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Heidary Arash E, Shiban A, Song S, Attisano L (2017) MARK4 inhibits hippo signaling to promote proliferation and migration of breast cancer cells. EMBO Rep 18:420–436. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hirate Y, Hirahara S, Inoue K-I, Kiyonari H, Niwa H, Sasaki H (2015) Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, hippo signaling, and cell positioning in 16-cell stage mouse embryos. Develop Growth Differ 57:544. CrossRefGoogle Scholar
  34. 34.
    Zhao B, Li L, Wang L, Wang C-Y, Yu J, Guan K-L (2012) Cell detachment activates the hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 26:54–68. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Elosegui-Artola A, Andreu I, Beedle AEM, Lezamiz A, Uroz M, Kosmalska AJ et al (2017) Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171:1397–1410.e14. CrossRefPubMedGoogle Scholar
  36. 36.
    Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS (2002) The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111:29–40CrossRefGoogle Scholar
  37. 37.
    Schiller HB, Hermann M-R, Polleux J, Vignaud T, Zanivan S, Friedel CC et al (2013) β1- and αv-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat Cell Biol 15:625–636. CrossRefPubMedGoogle Scholar
  38. 38.
    Elosegui-Artola A, Oria R, Chen Y, Kosmalska A, Pérez-González C, Castro N et al (2016) Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol 18:540–548. CrossRefPubMedGoogle Scholar
  39. 39.
    Roca-Cusachs P, Gauthier NC, del Rio A, Sheetz MP (2009) Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and Talin enable mechanotransduction. Proc Natl Acad Sci 106:16245–16250. CrossRefPubMedGoogle Scholar
  40. 40.
    Taccioli C, Sorrentino G, Zannini A, Caroli J, Beneventano D, Anderlucci L et al (2015) MDP, a database linking drug response data to genomic information, identifies dasatinib and statins as a combinatorial strategy to inhibit YAP/TAZ in cancer cells. Oncotarget 6:38854–38865. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Oku Y, Nishiya N, Shito T, Yamamoto R, Yamamoto Y, Oyama C et al (2015) Small molecules inhibiting the nuclear localization of YAP/TAZ for chemotherapeutics and chemosensitizers against breast cancers. FEBS Open Bio 5:542–549. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kim N-G, Gumbiner BM (2015) Adhesion to fibronectin regulates hippo signaling via the FAK-Src-PI3K pathway. J Cell Biol 210:503–515. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Stein PL, Vogel H, Soriano P (1994) Combined deficiencies of Src, Fyn, and yes tyrosine kinases in mutant mice. Genes Dev 8:1999–2007. CrossRefPubMedGoogle Scholar
  44. 44.
    Pirone DM, Liu WF, Ruiz SA, Gao L, Raghavan S, Lemmon CA et al (2006) An inhibitory role for FAK in regulating proliferation: a link between limited adhesion and RhoA-ROCK signaling. J Cell Biol 174:277–288. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Geiger B, Bershadsky A (2001) Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol 13:584–592. CrossRefPubMedGoogle Scholar
  46. 46.
    Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S et al (2014) Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol 16:357–366. CrossRefPubMedGoogle Scholar
  47. 47.
    Miralles F, Posern G, Zaromytidou A-I, Treisman R (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113:329–342CrossRefGoogle Scholar
  48. 48.
    Esnault C, Stewart A, Gualdrini F, East P, Horswell S, Matthews N et al (2014) Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev 28:943–958. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sansores-Garcia L, Bossuyt W, Wada K-I, Yonemura S, Tao C, Sasaki H et al (2011) Modulating F-actin organization induces organ growth by affecting the hippo pathway. EMBO J 30:2325–2335. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ren F, Zhang L, Jiang J (2010) Hippo signaling regulates Yorkie nuclear localization and activity through 14-3-3 dependent and independent mechanisms. Dev Biol 337:303–312. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Chan SW, Lim CJ, Loo LS, Chong YF, Huang C, Hong W (2009) TEADs mediate nuclear retention of TAZ to promote oncogenic transformation. J Biol Chem 284:14347–14358. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Nil Ege, Anna M Dowbaj, Ming Jiang, Michael Howell, Robert P Jenkins, Erik Sahai. Actin and Src-family kinases regulate nuclear YAP1 and its export.
  53. 53.
    Finch ML, Passman AM, Strauss RP, Yeoh GC, Callus BA (2015) Sub-cellular localisation studies may spuriously detect the yes-associated protein, YAP, in nucleoli leading to potentially invalid conclusions of its function. PLoS One 10:e0114813. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M et al (2015) Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J 34:1349–1370. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sorrentino G, Ruggeri N, Zannini A, Ingallina E, Bertolio R, Marotta C et al (2017) Glucocorticoid receptor signalling activates YAP in breast cancer. Nat Comms 8:14073. CrossRefGoogle Scholar
  56. 56.
    Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S et al (2012) Role of TAZ as mediator of Wnt signaling. Cell 151:1443–1456. CrossRefPubMedGoogle Scholar
  57. 57.
    Liu C-Y, Zha Z-Y, Zhou X, Zhang H, Huang W, Zhao D et al (2010) The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem 285:37159–37169. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kim M, Kim T, Johnson RL, Lim D-S (2015) Transcriptional co-repressor function of the hippo pathway transducers YAP and TAZ. Cell Rep 11:270. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular MedicineSchool of Medicine, University of PadovaPadovaItaly

Personalised recommendations