Advertisement

HTRF® Total and Phospho-YAP (Ser127) Cellular Assays

  • Diana Zindel
  • Claire Vol
  • Odile Lecha
  • Isabelle Bequignon
  • Merve Bilgic
  • Marion Vereecke
  • Fabienne Charrier-Savournin
  • Maïté Romier
  • Eric Trinquet
  • Jean-Philippe Pin
  • Julie Pannequin
  • Thomas Roux
  • Elodie Dupuis
  • Laurent PrézeauEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1893)

Abstract

The YAP protein is a co-transcription factor increasing the expression of genes involved in cell proliferation and repressing the expression of genes important for cell differentiation and apoptosis. It is regulated by several inputs, like the Hippo pathway, through the action of kinases that phosphorylate YAP on several residues. The level of phosphorylation of the residues serine 127 (S127) of YAP is generally assessed in cellular models, native tissues, and organs, as a marker of YAP activity and location, and is regulated by numerous partners. This phosphorylation event is classically detected using a western blot technical approach. Here, we describe a novel approach to detect both the relative amount of total YAP (T-YAP assay) and the phosphorylation of the residue S127 of YAP (S127-P-YAP assay) using a HTRF®-based method. This easy-to-run method can easily be miniaturized and allows for a high-throughput analysis in 96/384-well plate format, requiring less cellular material and being more rapid than other approaches.

Key words

YAP phosphorylation YAP-S127-phosphorylation-directed antibodies Antibody-based assay Resonance energy transfer HTRF® 

Notes

Acknowledgment

The work described was made possible through Cisbio Bioassays and the technological pharmacology facilities ARPEGE (Pharmacology Screening Interactome) of Biocampus (IGF). This work has been supported by CisBio (cooperative research team Eidos, CNRS N°039293/CBB DRD-09-04 avenant 4), the Labex EpiGenMed, an “Investissements d’avenir” program (ANR-10-LABX-12-01), the Fondation pour la Recherche Médicale (DEQ20170336747), CNRS, Inserm, and the University of Montpellier.

References

  1. 1.
    Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A et al (2011) The hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147:759–772CrossRefGoogle Scholar
  2. 2.
    Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183CrossRefGoogle Scholar
  3. 3.
    Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V et al (2014) YAP/TAZ incorporation in the b -catenin destruction complex orchestrates the Wnt response. Cell 158:157–170CrossRefGoogle Scholar
  4. 4.
    Hansen CG, Moroishi T, Guan K-L (2015) YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol 9:499–513CrossRefGoogle Scholar
  5. 5.
    Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L et al (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21:2747–2761CrossRefGoogle Scholar
  6. 6.
    Shrestha D, Jenei A, Nagy P, Vereb G, Szöllősi J (2015) Understanding FRET as a research tool for cellular studies. Int J Mol Sci 16:6718–6756CrossRefGoogle Scholar
  7. 7.
    Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395CrossRefGoogle Scholar
  8. 8.
    Comps-Agrar L, Maurel D, Rondard P, Pin J-P, Trinquet E, Prézeau L (2011) Cell-surface protein—protein interaction analysis with time-resolved FRET and snap-tag technologies: application to G protein-coupled receptor oligomerization. In: Luttrell LM, Ferguson SSG (eds) Signal Transduction Protocols, p 201–214Google Scholar
  9. 9.
    Zindel D, Engel S, Bottrill AR, Pin J-P, Prézeau L, Tobin AB, Bünemann M, Krasel C, Butcher AJ (2016) Identification of key phosphorylation sites in PTH1R that determine arrestin3 binding and fine-tune receptor signaling. Biochem J 473:4173–4192CrossRefGoogle Scholar
  10. 10.
    Lehn J-M, Roth CO (1991) Synthesis and properties of sodium and europium(III) cryptates incorporating the 2,2′-bipyridine 1,1′-dioxide and 3,3′-biisoquinoline 2,2′-dioxide units. Helv Chim Acta 74:572–578CrossRefGoogle Scholar
  11. 11.
    Bazin H, Trinquet E, Mathis G (2002) Time resolved amplification of cryptate emission: a versatile technology to trace biomolecular interactions. Rev Mol Biotechnol 82:233–250CrossRefGoogle Scholar
  12. 12.
    Maurel D, Kniazeff J, Mathis G, Trinquet E, Pin J-P, Ansanay H (2004) Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Anal Biochem 329:253–262CrossRefGoogle Scholar
  13. 13.
    Mathis G (1995) Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin Chem 41:1391–1397PubMedGoogle Scholar
  14. 14.
    Ayoub MA, Trebaux J, Vallaghe J, Charrier-savournin F, Al-hosaini K, Moya AG, Pin J, Pfleger KDG, Trinquet E (2014) Homogeneous time-resolved fluorescence-based assay to monitor extracellular signal-regulated kinase signaling in a high-throughput format. Front Endocrinol 5:1–11CrossRefGoogle Scholar
  15. 15.
    Scholler P, Zwier JM, Trinquet E, Rondard P, Pin JP, Prézeau L, Kniazeff J (2013) Chapter seven - time-resolved Förster resonance energy transfer-based technologies to investigate G protein-coupled receptor machinery: high-throughput screening assays and future development. In: Prog Mol Biol Transl Sci, p 275–312Google Scholar
  16. 16.
    Selvin P, Hearst J (1994) Luminescence energy transfer using a terbium chelate : Improvements on fluorescence energy transfer. PNAS 91:10024–10028CrossRefGoogle Scholar
  17. 17.
    Meng Z, Moroishi T, Mottier-Pavie V, Plouffe SW, Hansen CG, Hong AW, Park HW, Mo J-S, Lu W, Lu S et al (2015) MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun 6:8357CrossRefGoogle Scholar
  18. 18.
    Juan WC, Hong W (2016) Targeting the Hippo signaling pathway for tissue regeneration and cancer therapy. Genes (Basel) 7:1–25CrossRefGoogle Scholar
  19. 19.
    Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, Dupont S, Piccolo S (2018) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154:1047–1059CrossRefGoogle Scholar
  20. 20.
    Zhao B, Li L, Lei Q, Guan K (2010) The Hippo – YAP pathway in organ size control and tumorigenesis : an updated version, p 862–874CrossRefGoogle Scholar
  21. 21.
    Miller E, Yang J, Deran M, Wu C, Su AI, Bonamy GMC, Liu J, Peters EC, Wu X (2012) Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP. Chem Biol 19:955–962CrossRefGoogle Scholar
  22. 22.
    Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao J, Yuan H, Tumaneng K, Li H et al (2012) Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150:780–791CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Diana Zindel
    • 1
  • Claire Vol
    • 1
  • Odile Lecha
    • 1
  • Isabelle Bequignon
    • 1
  • Merve Bilgic
    • 1
  • Marion Vereecke
    • 1
  • Fabienne Charrier-Savournin
    • 2
  • Maïté Romier
    • 2
  • Eric Trinquet
    • 2
  • Jean-Philippe Pin
    • 1
  • Julie Pannequin
    • 1
  • Thomas Roux
    • 2
  • Elodie Dupuis
    • 2
  • Laurent Prézeau
    • 1
    Email author
  1. 1.IGF, Univ Montpellier, CNRS, INSERMMontpellierFrance
  2. 2.Cisbio Bioassays, F-30200CodoletFrance

Personalised recommendations