Skip to main content

Spatial and Quantitative Detection of BMP Activity in Mouse Embryonic Limb Buds

  • Protocol
  • First Online:
Bone Morphogenetic Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1891))

  • 1154 Accesses

Abstract

Modulation of bone morphogenetic protein (BMP) activity is essential to the progression of limb development in the mouse embryo. Genetic disruption of BMP signaling at various stages of limb development causes defects ranging from complete limb agenesis to oligodactyly, polydactyly, webbing, and chondrodysplasia. To probe the state of BMP signaling in early limb buds, we designed two sets of primers to measure both spatially and quantitatively the transcription of nine key genes indicative of canonical BMP activity. One set is used to generate digoxigenin (DIG)-labeled antisense RNA probes for whole-mount mRNA in situ hybridization, while the second set is used for SYBR® Green-based quantitative PCR on limb bud cDNA. Here we describe step-by-step protocols for both methods around this specific set of genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeller R, López-Ríos J, Zuniga A (2009) Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat Rev Genet 10:845–858

    Article  CAS  Google Scholar 

  2. Bénazet JD, Zeller R (2009) Vertebrate limb development: moving from classical morphogen gradients to an integrated 4-dimensional patterning system. Cold Spring Harb Perspect Biol 1:a001339

    Article  Google Scholar 

  3. Bénazet JD, Bischofberger M, Tiecke E et al (2009) A self-regulatory system of interlinked signaling feedback loops controls mouse limb patterning. Science 323:1050–1053

    Article  Google Scholar 

  4. Niswander L, Jeffrey S, Martin GR et al (1994) A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371:609–612

    Article  CAS  Google Scholar 

  5. Laufer E, Nelson CE, Johnson RL et al (1994) Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79:993–1003

    Article  CAS  Google Scholar 

  6. Benazet JD, Zeller R (2013) Dual requirement of ectodermal Smad4 during AER formation and termination of feedback signaling in mouse limb buds. Genesis 51:660–666

    CAS  PubMed  Google Scholar 

  7. Ahn K, Mishina Y, Hanks MC et al (2001) BMPR-IA signaling is required for the formation of the apical ectodermal ridge and dorsal-ventral patterning of the limb. Development 128:4449–4461

    CAS  PubMed  Google Scholar 

  8. Soshnikova N, Zechner D, Huelsken J et al (2003) Genetic interaction between Wnt/beta-catenin and BMP receptor signaling during formation of the AER and the dorsal-ventral axis in the limb. Genes Dev 17:1963–1968

    Article  CAS  Google Scholar 

  9. Pajni-Underwood S, Wilson CP, Elder C et al (2007) BMP signals control limb bud interdigital programmed cell death by regulating FGF signaling. Development 134:2359–2368

    Article  CAS  Google Scholar 

  10. Lewandoski M, Sun X, Martin GR (2000) Fgf8 signalling from the AER is essential for normal limb development. Nat Genet 26:460–463

    Article  CAS  Google Scholar 

  11. Moon AM, Capecchi MR (2000) Fgf8 is required for outgrowth and patterning of the limbs. Nat Genet 26:455–459

    Article  CAS  Google Scholar 

  12. Bénazet JD, Pignatti E, Nugent A et al (2012) Smad4 is required to induce digit ray primordia and to initiate the aggregation and differentiation of chondrogenic progenitors in mouse limb buds. Development 139:4250–4260

    Article  Google Scholar 

  13. Ovchinnikov DA, Selever J, Wang Y et al (2006) BMP receptor type IA in limb bud mesenchyme regulates distal outgrowth and patterning. Dev Biol 295:103–115

    Article  CAS  Google Scholar 

  14. Zúñiga A, Haramis AP, McMahon AP et al (1999) Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature 401:598–602

    Article  Google Scholar 

  15. Khokha MK, Hsu D, Brunet LJ et al (2003) Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet 34:303–307

    Article  CAS  Google Scholar 

  16. Michos O, Panman L, Vintersten K et al (2004) Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131:3401–3410

    Article  CAS  Google Scholar 

  17. te Welscher P, Zuniga A, Kuijper S et al (2002) Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science 298:827–830

    Article  Google Scholar 

  18. Mariani FV, Ahn CP, Martin GR (2008) Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. Nature 453:401–405

    Article  CAS  Google Scholar 

  19. Selever J, Liu W, Lu MF et al (2004) Bmp4 in limb bud mesoderm regulates digit pattern by controlling AER development. Dev Biol 276:268–279

    Article  CAS  Google Scholar 

  20. Verheyden JM, Sun X (2008) An Fgf/Gremlin inhibitory feedback loop triggers termination of limb bud outgrowth. Nature 454:638–641

    Article  CAS  Google Scholar 

  21. Scherz PJ, Harfe BD, McMahon AP et al (2004) The limb bud Shh-Fgf feedback loop is terminated by expansion of former ZPA cells. Science 305:396–399

    Article  CAS  Google Scholar 

  22. Lopez-Rios J, Speziale D, Robay D et al (2012) GLI3 constrains digit number by controlling both progenitor proliferation and BMP-dependent exit to chondrogenesis. Dev Cell 22:837–848

    Article  CAS  Google Scholar 

  23. Harfe BD, Scherz PJ, Nissim S et al (2004) Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118:517–528

    Article  CAS  Google Scholar 

  24. Ahn S, Joyner AL (2004) Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 118:505–516

    Article  CAS  Google Scholar 

  25. Bandyopadhyay A, Tsuji K, Cox K et al (2006) Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2:e216

    Article  Google Scholar 

  26. Raspopovic J, Marcon L, Russo L et al (2014) Modeling digits. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science 345:566–570

    Article  CAS  Google Scholar 

  27. Suzuki T, Hasso SM, Fallon JF (2008) Unique SMAD1/5/8 activity at the phalanx-forming region determines digit identity. Proc Natl Acad Sci U S A 105:4185–4190

    Article  CAS  Google Scholar 

  28. Retting KN, Song B, Yoon BS et al (2009) BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development 136:1093–1104

    Article  CAS  Google Scholar 

  29. Yoon BS, Ovchinnikov DA, Yoshii I et al (2005) Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A 102:5062–5067

    Article  CAS  Google Scholar 

  30. Wong YL, Behringer RR, Kwan KM (2012) Smad1/Smad5 signaling in limb ectoderm functions redundantly and is required for interdigital programmed cell death. Dev Biol 363:247–257

    Article  CAS  Google Scholar 

  31. Choi KS, Lee C, Maatouk DM et al (2012) Bmp2, Bmp4 and Bmp7 are co-required in the mouse AER for normal digit patterning but not limb outgrowth. PLoS One 7:e37826

    Article  CAS  Google Scholar 

  32. Galli A, Robay D, Osterwalder M et al (2010) Distinct roles of Hand2 in initiating polarity and posterior Shh expression during the onset of mouse limb bud development. PLoS Genet 6:e1000901

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful Dr. Rolf Zeller for forwarding the invitation to write this chapter and to Dr. Licia Selleri for providing the material and reagents necessary for generating and testing the mRNA in situ hybridization probes.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marques, M.R., Bénazet, JD. (2019). Spatial and Quantitative Detection of BMP Activity in Mouse Embryonic Limb Buds. In: Rogers, M. (eds) Bone Morphogenetic Proteins. Methods in Molecular Biology, vol 1891. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8904-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8904-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8903-4

  • Online ISBN: 978-1-4939-8904-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics