Advertisement

Prenatal Diagnosis by Whole Exome Sequencing in Fetuses with Ultrasound Abnormalities

  • Vanessa Felice
  • Avinash Abhyankar
  • Vaidehi Jobanputra
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1885)

Abstract

Whole-exome sequencing (WES) has been used as a standard of care for postnatal diagnosis in the clinical setting in the past few years for children and adults with undiagnosed disease. Many rare disorders have been diagnosed through WES, which is less expensive than the traditional serial genetic testing where patients had previously spent years on an uninformative diagnostic odyssey. Seeking a diagnosis often entails enduring time consuming, and sometimes invasive procedures which may be associated with medical risks that are stressful for families and impose a heavy burden on the health-care system. However, the use of WES is considered impractical in the prenatal and neonatal testing period because of the technical and computational challenges of performing genomic sequencing from small amounts of genetic material, and the need for faster turnaround time (TAT) than the current 6–8 weeks TAT provided by most clinical labs offering postnatal testing. With the rapidly evolving methods of sequence analysis, there are clinical challenges such as the constantly increasing number of genes being identified which are not yet fully phenotypically characterized, especially when ascertained prenatally or neonatally before all the clinical features may be evident. Despite these challenges, there are many clinical benefits to acquiring genomic information in the prenatal and neonatal period. These include superior prognostic information which allows for prenatal planning of mode of delivery and hospital for delivery and optimized neonatal management. We have developed a clinical WES assay using small amounts of DNA with a TAT of 10 days for use in the prenatal or neonatal setting. This test is used to detect small nucleotide variants and indels in fetuses and neonates with structural abnormalities.

Key words

Prenatal diagnosis Whole-exome sequencing Fetal anomalies 

References

  1. 1.
    Centers for Disease Control and Prevention, National Center on Birth Defects and Developmental Disabilities (2008) Update on overall prevalence of major birth defects—Atlanta, Georgia, 1978–2005. MMWR 57(1):1–5Google Scholar
  2. 2.
    Talkowski ME, Ordulu Z, Pillalamarri V et al (2012) Clinical diagnosis by whole-genome sequencing of a prenatal sample. N Engl J Med 367(23):2226–2232.  https://doi.org/10.1056/NEJMoa1208594CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wapner RJ, Martin CL, Levy B et al (2012) Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med 367(23):2175–2184.  https://doi.org/10.1056/NEJMoa1203382CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jelin AC, Vora N (2018) Whole exome sequencing: applications in prenatal genetics. Obstet Gynecol Clin North Am 45(1):69–81.  https://doi.org/10.1016/j.ogc.2017.10.003CrossRefPubMedGoogle Scholar
  5. 5.
    Iglesias A, Anyane-Yeboa K, Wynn J et al (2014) The usefulness of whole-exome sequencing in routine clinical practice. Genet Med 16(12):922–931.  https://doi.org/10.1038/gim.2014.58CrossRefPubMedGoogle Scholar
  6. 6.
    Yang Y, Muzny DM, Reid JG et al (2013) Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med 369(16):1502–1511.  https://doi.org/10.1056/NEJMoa1306555CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yang Y, Muzny DM, Xia F et al (2014) Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 312(18):1870–1879.  https://doi.org/10.1001/jama.2014.14601CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Macera MJ, Sobrino A, Levy B et al (2015) Prenatal diagnosis of chromothripsis, with nine breaks characterized by karyotyping, FISH, microarray and whole-genome sequencing. Prenat Diagn 35(3):299–301.  https://doi.org/10.1002/pd.4456CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Carss KJ, Hillman SC, Parthiban V et al (2014) Exome sequencing improves genetic diagnosis of structural fetal abnormalities revealed by ultrasound. Hum Mol Genet 23(12):3269–3277.  https://doi.org/10.1093/hmg/ddu038CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Drury S, Williams H, Trump N et al (2015) Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities. Prenat Diagn 35(10):1010–1017.  https://doi.org/10.1002/pd.4675CrossRefPubMedGoogle Scholar
  11. 11.
    Hillman SC, Willams D, Carss KJ et al (2015) Prenatal exome sequencing for fetuses with structural abnormalities: the next step. Ultrasound Obstet Gynecol 45(1):4–9.  https://doi.org/10.1002/uog.14653CrossRefPubMedGoogle Scholar
  12. 12.
    Vora NL, Powell B, Brandt A et al (2017) Prenatal exome sequencing in anomalous fetuses: new opportunities and challenges. Genet Med 19(11):1207–1216.  https://doi.org/10.1038/gim.2017.33CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wapner RJ, Petrovski S, Brennan K et al (2017) Whole exome sequencing in the evaluation of fetal structural anomalies: a prospective study of sequential patients. Am J Obstet Gynecol 216(1 Supplement):S5–S6CrossRefGoogle Scholar
  14. 14.
    Committee on Genetics and the Society for Maternal-Fetal Medicine (2016) Committee opinion no.682: microarrays and next-generation sequencing technology: the use of advanced genetic diagnostic tools in obstetrics and gynecology. Obstet Gynecol 128(6):e262–e268.  https://doi.org/10.1097/AOG.0000000000001817CrossRefGoogle Scholar
  15. 15.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760.  https://doi.org/10.1093/bioinformatics/btp324CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li H, Handsaker B, Wysoker A et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079.  https://doi.org/10.1093/bioinformatics/btp352CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    McKenna A, Hanna M, Banks E et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303.  https://doi.org/10.1101/gr.107524.110CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    McLaren W, Gil L, Hunt SE et al (2016) The Ensembl variant effect predictor. Genome Biol 17(1):122.  https://doi.org/10.1186/s13059-016-0974-4CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081.  https://doi.org/10.1038/nprot.2009.86CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet Chapter 7:Unit7.20. doi: https://doi.org/10.1002/0471142905.hg0720s76
  21. 21.
    Landrum MJ, Lee JM, Benson M et al (2018) ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46(D1):D1062–D1067.  https://doi.org/10.1093/nar/gkx1153CrossRefGoogle Scholar
  22. 22.
    Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424.  https://doi.org/10.1038/gim.2015.30CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vanessa Felice
    • 1
  • Avinash Abhyankar
    • 1
  • Vaidehi Jobanputra
    • 1
    • 2
  1. 1.Molecular DiagnosticsNew York Genome CenterNew YorkUSA
  2. 2.Department of Pathology and Cell BiologyVagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUSA

Personalised recommendations