Advertisement

Autophagy pp 163-172 | Cite as

Studying Autophagic Lysosome Reformation in Cells and by an In Vitro Reconstitution System

  • Yang Chen
  • Qian Peter Su
  • Li YuEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1880)

Abstract

Autophagic lysosome reformation (ALR) is the terminal step of autophagy. ALR functions to recycle lysosomal membranes and maintain lysosome homeostasis. Maintaining a functional lysosome pool is critical for generating autolysosomes, in which cellular components are degraded and turned over during autophagy. This unit describes methods to visualize ALR in cells. In addition, this unit provides detailed protocols to establish in vitro systems which can be used to reconstitute ALR as well as to reconstitute mitochondrial tubulation/network formation, another process that is driven by motor proteins.

Key words

Autophagy Autophagic lysosome reformation Autolysosome In vitro reconstitution Dynamic tubulation Mitochondrial network formation 

References

  1. 1.
    Yu L et al (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465(7300):942–946CrossRefGoogle Scholar
  2. 2.
    Chen Y, Yu L (2017) Recent progress in autophagic lysosome reformation. Traffic 18(6):358–361CrossRefGoogle Scholar
  3. 3.
    Rong Y et al (2011) Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc Natl Acad Sci U S A 108(19):7826–7831CrossRefGoogle Scholar
  4. 4.
    Schulze RJ et al (2013) Lipid droplet breakdown requires dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes. J Cell Biol 203(2):315–326CrossRefGoogle Scholar
  5. 5.
    Magalhaes J et al (2016) Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease. Hum Mol Genet 25(16):3432–3445CrossRefGoogle Scholar
  6. 6.
    Chang J, Lee S, Blackstone C (2014) Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation. J Clin Invest 124(12):5249–5262CrossRefGoogle Scholar
  7. 7.
    Varga RE et al (2015) In vivo evidence for lysosome depletion and impaired autophagic clearance in hereditary spastic paraplegia type SPG11. PLoS Genet 11(8):e1005454CrossRefGoogle Scholar
  8. 8.
    Rong Y et al (2012) Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nat Cell Biol 14(9):924–934CrossRefGoogle Scholar
  9. 9.
    Du W et al (2016) Kinesin 1 drives autolysosome tubulation. Dev Cell 37(4):326–336CrossRefGoogle Scholar
  10. 10.
    Su QP et al (2016) Vesicle size regulates nanotube formation in the cell. Sci Rep 6:24002CrossRefGoogle Scholar
  11. 11.
    Wang C et al (2015) Dynamic tubulation of mitochondria drives mitochondrial network formation. Cell Res 25(10):1108–1120CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Precision Medicine Multi-Omics ResearchPeking University Health Science Center, Peking UniversityBeijingChina
  2. 2.Institute for Biomedical Materials & Devices (IBMD)Faculty of Science, University of Technology SydneyNew South WalesAustralia
  3. 3.State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC)School of Life Sciences, Peking UniversityBeijingChina

Personalised recommendations