Advertisement

Autophagy pp 691-701 | Cite as

Quantitative Phosphoproteomics of Selective Autophagy Receptors

  • Thomas Juretschke
  • Petra BeliEmail author
  • Ivan DikicEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1880)

Abstract

Selective autophagy enables degradation of specific cargo such as protein aggregates or organelles and thus plays an essential role in the regulation of cellular homeostasis. Cargo specificity is achieved on the level of autophagy receptors that concurrently bind the cargo and the autophagosomal membrane. Recent studies have demonstrated that selective autophagy is tightly regulated by posttranslational modifications of autophagy receptors, in particular protein phosphorylation. Phosphorylation of autophagy receptors by different kinases, including Tank-binding kinase (TBK1), can increase their affinity toward the cargo or autophagosomes and thereby regulate the specificity and activity of selective autophagy depending on the cellular condition.

Here, we report an approach for quantitative analysis of phosphorylation sites on autophagy receptors using mass spectrometry-based proteomics. In this protocol, GFP-tagged autophagy receptors are purified based on the high-affinity binding between GFP and GFP-Trap agarose. Interaction partners and background binders are subsequently removed by washes under denaturing conditions to obtain a pure fraction of the bait protein, thereby reducing the complexity of the analyzed sample. The bait protein is then digested on-bead, and peptides are analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The described approach permits systematic identification and quantification of phosphorylation sites on autophagy receptors and other autophagic components. In addition to phosphorylation, this protocol is suitable for investigating other posttranslational modifications, including protein ubiquitylation.

Key words

Autophagy receptors Selective autophagy Phosphorylation Mass spectrometry-based proteomics SILAC 

Notes

Acknowledgments

This work is supported by the German Research Foundation (Emmy Noether Program, BE 5342/1-1 and SFB 1177 on Selective Autophagy).

References

  1. 1.
    Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42.  https://doi.org/10.1016/j.cell.2007.12.018CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132.  https://doi.org/10.1146/annurev-cellbio-092910-154005CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822.  https://doi.org/10.1038/ncb0910-814CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16:495–501.  https://doi.org/10.1038/ncb2979CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rogov V, Dötsch V, Johansen T et al (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53:167–178.  https://doi.org/10.1016/j.molcel.2013.12.014CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466:68–76.  https://doi.org/10.1038/nature09204CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Deng Z, Purtell K, Lachance V et al (2017) Autophagy receptors and neurodegenerative diseases. Trends Cell Biol 27:491.  https://doi.org/10.1016/j.tcb.2017.01.001CrossRefPubMedGoogle Scholar
  8. 8.
    Wild P, McEwan DG, Dikic I (2014) The LC3 interactome at a glance. J Cell Sci 127:3–9.  https://doi.org/10.1242/jcs.140426CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wild P, Farhan H, McEwan DG et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228–233.  https://doi.org/10.1126/science.1205405CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Richter B, Sliter DA, Herhaus L et al (2016) Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci 113:4039–4044.  https://doi.org/10.1073/pnas.1523926113CrossRefPubMedGoogle Scholar
  11. 11.
    Rogov VV, Suzuki H, Marinković M et al (2017) Phosphorylation of the mitochondrial autophagy receptor nix enhances its interaction with LC3 proteins. Sci Rep 7:1131.  https://doi.org/10.1038/s41598-017-01258-6CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Heo J-M, Ordureau A, Paulo JA et al (2015) The PINK1-PARKIN mitochondrial Ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 60:7–20.  https://doi.org/10.1016/j.molcel.2015.08.016CrossRefGoogle Scholar
  13. 13.
    Matsumoto G, Wada K, Okuno M et al (2011) Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell 44:279–289.  https://doi.org/10.1016/j.molcel.2011.07.039CrossRefGoogle Scholar
  14. 14.
    Pilli M, Arko-Mensah J, Ponpuak M et al (2012) TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37:223–234.  https://doi.org/10.1016/j.immuni.2012.04.015CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lim J, Lachenmayer ML, Wu S et al (2015) Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS Genet 11:e1004987.  https://doi.org/10.1371/journal.pgen.1004987CrossRefGoogle Scholar
  16. 16.
    Liu Z, Chen P, Gao H et al (2014) Ubiquitylation of autophagy receptor optineurin by HACE1 activates selective autophagy for tumor suppression. Cancer Cell 26:106–120.  https://doi.org/10.1016/j.ccr.2014.05.015CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80:273–299.  https://doi.org/10.1146/annurev-biochem-061308-093216CrossRefPubMedGoogle Scholar
  18. 18.
    Bantscheff M, Lemeer S, Savitski MM, Kuster B (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404:939–965.  https://doi.org/10.1007/s00216-012-6203-4CrossRefPubMedGoogle Scholar
  19. 19.
    Ordureau A, Münch C, Harper JW (2015) Quantifying ubiquitin signaling. Mol Cell 58(4):660–676.  https://doi.org/10.1016/j.molcel.2015.02.020CrossRefGoogle Scholar
  20. 20.
    Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906.  https://doi.org/10.1038/nprot.2007.261CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ishihama Y, Rappsilber J, Andersen JS, Mann M (2002) Microcolumns with self-assembled particle frits for proteomics. J Chromatogr A 979:233–239CrossRefGoogle Scholar
  22. 22.
    Michalski A, Damoc E, Hauschild JP et al (2011) Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteomics 10:M111.011015.  https://doi.org/10.1074/mcp.M111.011015CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kelstrup CD, Young C, Lavallee R et al (2012) Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. J Proteome Res 11:3487–3497.  https://doi.org/10.1021/pr3000249CrossRefPubMedGoogle Scholar
  24. 24.
    Olsen JV, Macek B, Lange O et al (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4:709–712.  https://doi.org/10.1038/nmeth1060CrossRefPubMedGoogle Scholar
  25. 25.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372.  https://doi.org/10.1038/nbt.1511CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805.  https://doi.org/10.1021/pr101065jCrossRefPubMedGoogle Scholar
  27. 27.
    Bendall SC, Hughes C, Stewart MH et al (2008) Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 7:1587–1597.  https://doi.org/10.1074/mcp.M800113-MCP200CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cox J, Matic I, Hilger M et al (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4:698–705.  https://doi.org/10.1038/nprot.2009.36CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Molecular Biology (IMB)MainzGermany
  2. 2.Institute of Biochemistry IIGoethe University School of MedicineFrankfurtGermany
  3. 3.Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurtGermany

Personalised recommendations