Advertisement

Autophagy pp 611-619 | Cite as

Triggering Mitophagy with Photosensitizers

  • Cheng-Wei Hsieh
  • Wei Yuan YangEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1880)

Abstract

One can utilize light illumination to stimulate mitochondrial reactive oxygen species production through the use of mitochondria-specific photosensitizers. By proper tuning of the light dosage, the methodology permits probing of a multitude of mitochondrial damage responses, including mitophagy. This light-controllable trick offers unique opportunities for the investigation of mitophagy—one can spatiotemporally define mitochondrial damage, alter the number of impaired mitochondria, as well as modulate the severity of the mitochondrial injury. This light-activated mitophagy can be adapted not only to single-cell imaging techniques but also to cell population-based biochemical assays.

Key words

Autophagy Mitophagy Photosensitizer MitoTracker Deep Red 

Notes

Acknowledgments

This work was supported by the MOST 104-2628-B-001-001-MY4 research grant from the Ministry of Science and Technology in Taiwan.

References

  1. 1.
    Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14CrossRefGoogle Scholar
  2. 2.
    Narendra D, Tanaka A, Suen DF et al (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803CrossRefGoogle Scholar
  3. 3.
    Lazarou M, Narendra DP, Jin SM et al (2013) PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J Cell Biol 200(2):163–172CrossRefGoogle Scholar
  4. 4.
    Lazarou M, Sliter DA, Kane LA et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524(7565):309–314CrossRefGoogle Scholar
  5. 5.
    Padman BS, Bach M, Lucarelli G et al (2013) The protonophore CCCP interferes with lysosomal degradation of autophagic cargo in yeast and mammalian cells. Autophagy 9(11):1862–1875CrossRefGoogle Scholar
  6. 6.
    Hsieh CW, Chu CH, Lee HM et al (2015) Triggering mitophagy with far-red fluorescent photosensitizers. Sci Rep 5:10376CrossRefGoogle Scholar
  7. 7.
    Yang JY, Yang WY (2011) Spatiotemporally controlled initiation of Parkin-mediated mitophagy within single cells. Autophagy 7(10):1230–1238CrossRefGoogle Scholar
  8. 8.
    Wong YC, Holzbaur EL (2014) Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci U S A 111(42):E4439–E4448CrossRefGoogle Scholar
  9. 9.
    Ashrafi G, Schlehe JS, LaVoie MJ et al (2014) Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol 206(5):655–670CrossRefGoogle Scholar
  10. 10.
    Wang Y, Nartiss Y, Steipe B et al (2012) ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy. Autophagy 8(10):1462–1476CrossRefGoogle Scholar
  11. 11.
    Choubey V, Safiulina D, Vaarmann A et al (2011) Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy. J Biol Chem 286(12):10814–10824CrossRefGoogle Scholar
  12. 12.
    Yang JY, Yang WY (2013) Bit-by-bit autophagic removal of parkin-labelled mitochondria. Nat Commun 4:2428CrossRefGoogle Scholar
  13. 13.
    Wojtovich AP, Foster TH (2014) Optogenetic control of ROS production. Redox Biol 2:368–376CrossRefGoogle Scholar
  14. 14.
    Bulina ME, Chudakov DM, Britanova OV et al (2006) A genetically encoded photosensitizer. Nat Biotechnol 24(1):95–99CrossRefGoogle Scholar
  15. 15.
    Takemoto K, Matsuda T, Sakai N et al (2013) SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation. Sci Rep 3:2629CrossRefGoogle Scholar
  16. 16.
    Sarkisyan KS, Zlobovskaya OA, Gorbachev DA et al (2015) KillerOrange, a genetically encoded photosensitizer activated by blue and green light. PLoS One 10(12):e0145287CrossRefGoogle Scholar
  17. 17.
    Shu X, Lev-Ram V, Deerinck TJ et al (2011) A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9(4):e1001041CrossRefGoogle Scholar
  18. 18.
    Westberg M, Holmegaard L, Pimenta FM et al (2015) Rational design of an efficient, genetically encodable, protein-encased singlet oxygen photosensitizer. J Am Chem Soc 137(4):1632–1642CrossRefGoogle Scholar
  19. 19.
    He J, Wang Y, Missinato MA et al (2016) A genetically targetable near-infrared photosensitizer. Nat Methods 13(3):263–268CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
  2. 2.Institute of Biochemical Sciences, College of Life SciencesNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations