Advertisement

Autophagy pp 77-90 | Cite as

Structural Studies of Selective Autophagy in Yeast

  • Akinori Yamasaki
  • Yasunori Watanabe
  • Nobuo N. NodaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1880)

Abstract

Budding yeast has been utilized as a model system for studying basic mechanisms of autophagy. The cytoplasm-to-vacuole targeting (Cvt) pathway, which delivers some vacuolar enzymes into the vacuole selectively and constitutively, is one of the most characterized examples of selective autophagy in budding yeast. Here we summarize the methods of X-ray crystallography, NMR, and other biophysical analyses to study the structural basis of the Cvt pathway.

Key words

Cvt pathway X-ray crystallography NMR Atg8 Atg19 Ape1 

Notes

Acknowledgments

This work was supported by Japan Society for the Promotion of Sciences KAKENHI [grant numbers 25111001, 25111004 to N.N.N., 17K18339 to A.Y.], CREST, Japan Science and Technology Agency [grant number JPMJCR13M7 to N.N.N.], and The Naito Foundation [to N.N.N.].

References

  1. 1.
    Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132CrossRefGoogle Scholar
  2. 2.
    Lynch-Day MA, Klionsky DJ (2010) The Cvt pathway as a model for selective autophagy. FEBS Lett 584:1359–1366CrossRefGoogle Scholar
  3. 3.
    Scott SV, Guan J, Hutchins MU, Kim J, Klionsky DJ (2001) Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol Cell 7:1131–1141CrossRefGoogle Scholar
  4. 4.
    Leber R, Silles E, Sandoval IV, Mazon MJ (2001) Yol082p, a novel CVT protein involved in the selective targeting of aminopeptidase I to the yeast vacuole. J Biol Chem 276:29210–29217CrossRefGoogle Scholar
  5. 5.
    Shintani T, Huang WP, Stromhaug PE, Klionsky DJ (2002) Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev Cell 3:825–837CrossRefGoogle Scholar
  6. 6.
    Suzuki K, Kamada Y, Ohsumi Y (2002) Studies of cargo delivery to the vacuole mediated by autophagosomes in Saccharomyces cerevisiae. Dev Cell 3:815–824CrossRefGoogle Scholar
  7. 7.
    Noda NN et al (2008) Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13:1211–1218CrossRefGoogle Scholar
  8. 8.
    Watanabe Y, Noda NN, Kumeta H, Suzuki K, Ohsumi Y, Inagaki F (2010) Selective transport of alpha-mannosidase by autophagic pathways: structural basis for cargo recognition by Atg19 and Atg34. J Biol Chem 285:30026–30033CrossRefGoogle Scholar
  9. 9.
    Yorimitsu T, Klionsky DJ (2005) Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol Biol Cell 16:1593–1605CrossRefGoogle Scholar
  10. 10.
    Suzuki K, Kondo C, Morimoto M, Ohsumi Y (2010) Selective transport of alpha-mannosidase by autophagic pathways: identification of a novel receptor, Atg34p. J Biol Chem 285:30019–30025CrossRefGoogle Scholar
  11. 11.
    Shintani T, Klionsky DJ (2004) Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J Biol Chem 279:29889–29894CrossRefGoogle Scholar
  12. 12.
    Oda MN, Scott SV, Hefner-Gravink A, Caffarelli AD, Klionsky DJ (1996) Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase I. J Cell Biol 132:999–1010CrossRefGoogle Scholar
  13. 13.
    Yamasaki A et al (2016) Structural basis for receptor-mediated selective autophagy of aminopeptidase I aggregates. Cell Rep 16:19–27CrossRefGoogle Scholar
  14. 14.
    Bertipaglia C et al (2016) Higher-order assemblies of oligomeric cargo receptor complexes form the membrane scaffold of the Cvt vesicle. EMBO Rep 17:1044–1060CrossRefGoogle Scholar
  15. 15.
    Su MY et al (2015) Structure of yeast Ape1 and its role in autophagic vesicle formation. Autophagy 11:1580–1593CrossRefGoogle Scholar
  16. 16.
    Yamasaki A, Noda NN (2017) Structural biology of the Cvt pathway. J Mol Biol 429:531–542CrossRefGoogle Scholar
  17. 17.
    Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  18. 18.
    Guntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378PubMedGoogle Scholar
  19. 19.
    Adachi W, Suzuki NN, Fujioka Y, Suzuki K, Ohsumi Y, Inagaki F (2007) Crystallization of Saccharomyces cerevisiae aminopeptidase 1, the major cargo protein of the Cvt pathway. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:200–203CrossRefGoogle Scholar
  20. 20.
    Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326CrossRefGoogle Scholar
  21. 21.
    Kabsch W (2010) Xds. Acta Crystallogr D Biol Crystallogr 66:125–132CrossRefGoogle Scholar
  22. 22.
    Adams PD et al (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221CrossRefGoogle Scholar
  23. 23.
    Pape T, Schneider TR (2004) HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J Appl Crystallogr 37:843–844CrossRefGoogle Scholar
  24. 24.
    Sheldrick GM (2010) Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D Biol Crystallogr 66:479–485CrossRefGoogle Scholar
  25. 25.
    Brunger AT et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921CrossRefGoogle Scholar
  26. 26.
    Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Akinori Yamasaki
    • 1
  • Yasunori Watanabe
    • 2
    • 1
  • Nobuo N. Noda
    • 1
    Email author
  1. 1.Laboratory of Structural BiologyInstitute of Microbial ChemistryTokyoJapan
  2. 2.Department of Bioscience, Graduate School of AgricultureEhime UniversityMatsuyamaJapan

Personalised recommendations