Advertisement

Autophagy pp 491-510 | Cite as

Autophagy in 3D In Vitro and Ex Vivo Cancer Models

  • Carlo Follo
  • Dario Barbone
  • William G. Richards
  • Raphael Bueno
  • V. Courtney Broaddus
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1880)

Abstract

Three-dimensional (3D) models are acquiring importance in cancer research due to their ability to mimic multiple features of the tumor microenvironment more accurately than standard monolayer two-dimensional (2D) cultures. Several groups, including our laboratory, are now accumulating evidence that autophagy in solid tumors is also better represented in 3D than in 2D. Here we detail how we generate 3D models, both in vitro multicellular spheroids generated from cell lines and ex vivo tumor fragment spheroids generated from tumor samples, and how autophagy can be measured in 3D cultures.

Key words

ATG13 Autophagy initiation Autophagic flux Three-dimensional Ex vivo Mesothelioma Spheroids 

Notes

Acknowledgments

This work was supported by the Simmons Mesothelioma Foundation; CF was supported also by the Meso Foundation under grant 383573.

References

  1. 1.
    Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845.  https://doi.org/10.1038/nrm2236CrossRefPubMedGoogle Scholar
  2. 2.
    Nyga A, Cheema U, Loizidou M (2011) 3D tumour models: novel in vitro approaches to cancer studies. J Cell Commun Signal 5(3):239–248.  https://doi.org/10.1007/s12079-011-0132-4CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hoffmann OI, Ilmberger C, Magosch S, Joka M, Jauch KW, Mayer B (2015) Impact of the spheroid model complexity on drug response. J Biotechnol 205:14–23.  https://doi.org/10.1016/j.jbiotec.2015.02.029CrossRefPubMedGoogle Scholar
  4. 4.
    Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, Kiyota N, Takao S, Kono S, Nakatsura T et al (2015) Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol Rep 33(4):1837–1843.  https://doi.org/10.3892/or.2015.3767CrossRefPubMedGoogle Scholar
  5. 5.
    Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125(Pt 13):3015–3024.  https://doi.org/10.1242/jcs.079509CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Antoni D, Burckel H, Josset E, Noel G (2015) Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 16(3):5517–5527.  https://doi.org/10.3390/ijms16035517CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Barbone D, Cheung P, Battula S, Busacca S, Gray SG, Longley DB, Bueno R, Sugarbaker DJ, Fennell DA, Broaddus VC (2012) Vorinostat eliminates multicellular resistance of mesothelioma 3D spheroids via restoration of Noxa expression. PLoS One 7(12):e52753.  https://doi.org/10.1371/journal.pone.0052753CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12(4):207–218.  https://doi.org/10.1089/adt.2014.573CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kim KU, Wilson SM, Abayasiriwardana KS, Collins R, Fjellbirkeland L, Xu Z, Jablons DM, Nishimura SL, Broaddus VC (2005) A novel in vitro model of human mesothelioma for studying tumor biology and apoptotic resistance. Am J Respir Cell Mol Biol 33(6):541–548.  https://doi.org/10.1165/rcmb.2004-0355OCCrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W (2014) 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev 69–70:29–41.  https://doi.org/10.1016/j.addr.2014.03.001CrossRefPubMedGoogle Scholar
  11. 11.
    Tanner K, Gottesman MM (2015) Beyond 3D culture models of cancer. Sci Transl Med 7(283):283–289.  https://doi.org/10.1126/scitranslmed.3009367CrossRefGoogle Scholar
  12. 12.
    do Amaral JB, Rezende-Teixeira P, Freitas VM, Machado-Santelli GM (2011) MCF-7 cells as a three-dimensional model for the study of human breast cancer. Tissue Eng Part C Methods 17(11):1097–1107.  https://doi.org/10.1089/ten.tec.2011.0260CrossRefPubMedGoogle Scholar
  13. 13.
    Ma XH, Piao S, Wang D, McAfee QW, Nathanson KL, Lum JJ, Li LZ, Amaravadi RK (2011) Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clin Cancer Res 17(10):3478–3489.  https://doi.org/10.1158/1078-0432.CCR-10-2372CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gomes LR, Vessoni AT, Menck CF (2015) Three-dimensional microenvironment confers enhanced sensitivity to doxorubicin by reducing p53-dependent induction of autophagy. Oncogene 34(42):5329–5340.  https://doi.org/10.1038/onc.2014.461CrossRefPubMedGoogle Scholar
  15. 15.
    Koehler BC, Jassowicz A, Scherr AL, Lorenz S, Radhakrishnan P, Kautz N, Elssner C, Weiss J, Jaeger D, Schneider M et al (2015) Pan-Bcl-2 inhibitor Obatoclax is a potent late stage autophagy inhibitor in colorectal cancer cells independent of canonical autophagy signaling. BMC Cancer 15:919.  https://doi.org/10.1186/s12885-015-1929-yCrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bingel C, Koeneke E, Ridinger J, Bittmann A, Sill M, Peterziel H, Wrobel JK, Rettig I, Milde T, Fernekorn U et al (2017) Three-dimensional tumor cell growth stimulates autophagic flux and recapitulates chemotherapy resistance. Cell Death Dis 8(8):e3013.  https://doi.org/10.1038/cddis.2017.398CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Russell RC, Yuan HX, Guan KL (2014) Autophagy regulation by nutrient signaling. Cell Res 24(1):42–57.  https://doi.org/10.1038/cr.2013.166CrossRefPubMedGoogle Scholar
  18. 18.
    Barbone D, Yang TM, Morgan JR, Gaudino G, Broaddus VC (2008) Mammalian target of rapamycin contributes to the acquired apoptotic resistance of human mesothelioma multicellular spheroids. J Biol Chem 283(19):13021–13030.  https://doi.org/10.1074/jbc.M709698200CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Follo C, Barbone D, Richards WG, Bueno R, Broaddus VC (2016) Autophagy initiation correlates with the autophagic flux in 3D models of mesothelioma and with patient outcome. Autophagy 12(7):1180–1194.  https://doi.org/10.1080/15548627.2016.1173799CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222.  https://doi.org/10.1080/15548627.2015.1100356CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Karanasios E, Stapleton E, Manifava M, Kaizuka T, Mizushima N, Walker SA, Ktistakis NT (2013) Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J Cell Sci 126(Pt 22):5224–5238.  https://doi.org/10.1242/jcs.132415CrossRefPubMedGoogle Scholar
  22. 22.
    Barbone D, Ryan JA, Kolhatkar N, Chacko AD, Jablons DM, Sugarbaker DJ, Bueno R, Letai AG, Coussens LM, Fennell DA et al (2011) The Bcl-2 repertoire of mesothelioma spheroids underlies acquired apoptotic multicellular resistance. Cell Death Dis 2:e174.  https://doi.org/10.1038/cddis.2011.58CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Xiang X, Phung Y, Feng M, Nagashima K, Zhang J, Broaddus VC, Hassan R, Fitzgerald D, Ho M (2011) The development and characterization of a human mesothelioma in vitro 3D model to investigate immunotoxin therapy. PLoS One 6(1):e14640.  https://doi.org/10.1371/journal.pone.0014640CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Barbone D, Follo C, Echeverry N, Gerbaudo VH, Klabatsa A, Bueno R, Felley-Bosco E, Broaddus VC (2015) Autophagy correlates with the therapeutic responsiveness of malignant pleural mesothelioma in 3D models. PLoS One 10(8):e0134825.  https://doi.org/10.1371/journal.pone.0134825CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Broaddus VC, Follo C, Barbone D. 3D models of mesothelioma in the study of mechanisms of cell survival. In Asbestos and mesothelioma. Testa JR,. Springer International Publishing, New York 2017:237–257Google Scholar
  26. 26.
    Folkman J, Moscona A (1978) Role of cell shape in growth control. Nature 273(5661):345–349CrossRefGoogle Scholar
  27. 27.
    Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221(2):117–124.  https://doi.org/10.1002/path.2694CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kunz-Schughart LA, Kreutz M, Knuechel R (1998) Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int J Exp Pathol 79(1):1–23CrossRefGoogle Scholar
  29. 29.
    Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R (2004) The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen 9(4):273–285.  https://doi.org/10.1177/1087057104265040CrossRefPubMedGoogle Scholar
  30. 30.
    Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148(1):3–15.  https://doi.org/10.1016/j.jbiotec.2010.01.012CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Carlo Follo
    • 1
  • Dario Barbone
    • 1
  • William G. Richards
    • 2
  • Raphael Bueno
    • 2
  • V. Courtney Broaddus
    • 1
  1. 1.Zuckerberg San Francisco General Hospital and Trauma CenterUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Division of Thoracic Surgery, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations