Advertisement

Autophagy pp 243-256 | Cite as

Methods for Imaging Autophagosome Dynamics in Primary Neurons

  • Audrey Dong
  • Vineet Vinay Kulkarni
  • Sandra MadayEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1880)

Abstract

Autophagy is an essential degradative pathway that maintains neuronal homeostasis and prevents axon degeneration. However, the mechanisms of autophagy in neurons are only beginning to be understood. To address this fundamental gap in knowledge, we have established several key methodologies for live-cell imaging and quantitative analysis of autophagy in primary hippocampal neurons. Using these methods, we have defined compartment-specific dynamics of autophagy in real-time under basal versus stress conditions. For example, we have characterized autophagosome biogenesis in the distal axon and subsequent retrograde transport to the soma for degradation. Autophagosomes are also generated locally within the soma. In contrast to the axon, the majority of autophagosomes in dendrites are stationary, while some exhibit bidirectional movement. These studies establish an initial road map for autophagosome dynamics in each compartment of the neuron and set the stage for a more detailed understanding of neuronal autophagy in stress and disease.

Key words

Autophagy Hippocampal neurons Autophagosome Transport Biogenesis Axon Dendrite 

Notes

Acknowledgments

This work was funded by NIH grants K99NS082619 and R00NS082619, the McCabe Fund Fellow Award, the University of Pennsylvania Alzheimer’s Disease Core Center, the Intellectual and Developmental Disabilities Research Center at the Children’s Hospital of Philadelphia and the University of Pennsylvania, and The Philadelphia Foundation to S.M.

References

  1. 1.
    Maday S (2016) Mechanisms of neuronal homeostasis: autophagy in the axon. Brain Res 1649(Pt B):143–150.  https://doi.org/10.1016/j.brainres.2016.03.047CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yamamoto A, Yue Z (2014) Autophagy and its normal and pathogenic states in the brain. Annu Rev Neurosci 37:55–78.  https://doi.org/10.1146/annurev-neuro-071013-014149CrossRefPubMedGoogle Scholar
  3. 3.
    Ariosa AR, Klionsky DJ (2016) Autophagy core machinery: overcoming spatial barriers in neurons. J Mol Med (Berl) 94(11):1217–1227.  https://doi.org/10.1007/s00109-016-1461-9CrossRefGoogle Scholar
  4. 4.
    Maday S, Wallace KE, Holzbaur EL (2012) Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 196(4):407–417.  https://doi.org/10.1083/jcb.201106120CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Maday S, Holzbaur EL (2014) Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev Cell 30(1):71–85.  https://doi.org/10.1016/j.devcel.2014.06.001CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Maday S, Holzbaur EL (2016) Compartment-specific regulation of autophagy in primary neurons. J Neurosci 36(22):5933–5945.  https://doi.org/10.1523/JNEUROSCI.4401-15.2016CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Weidberg H, Shvets E, Elazar Z (2011) Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 80:125–156.  https://doi.org/10.1146/annurev-biochem-052709-094552CrossRefPubMedGoogle Scholar
  8. 8.
    Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132.  https://doi.org/10.1146/annurev-cellbio-092910-154005CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Spalding KL, Bhardwaj RD, Buchholz BA, Druid H, Frisen J (2005) Retrospective birth dating of cells in humans. Cell 122(1):133–143.  https://doi.org/10.1016/j.cell.2005.04.028CrossRefPubMedGoogle Scholar
  10. 10.
    Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889.  https://doi.org/10.1038/nature04724CrossRefGoogle Scholar
  11. 11.
    Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884.  https://doi.org/10.1038/nature04723CrossRefGoogle Scholar
  12. 12.
    Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr, Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A 104(36):14489–14494.  https://doi.org/10.1073/pnas.0701311104CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nishiyama J, Miura E, Mizushima N, Watanabe M, Yuzaki M (2007) Aberrant membranes and double-membrane structures accumulate in the axons of Atg5-null Purkinje cells before neuronal death. Autophagy 3(6):591–596CrossRefGoogle Scholar
  14. 14.
    Kim M, Sandford E, Gatica D, Qiu Y, Liu X, Zheng Y, Schulman BA, Xu J, Semple I, Ro SH, Kim B, Mavioglu RN, Tolun A, Jipa A, Takats S, Karpati M, Li JZ, Yapici Z, Juhasz G, Lee JH, Klionsky DJ, Burmeister M (2016) Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. Elife 5.  https://doi.org/10.7554/eLife.12245
  15. 15.
    Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728.  https://doi.org/10.1093/emboj/19.21.5720CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15(3):1101–1111.  https://doi.org/10.1091/mbc.E03-09-0704CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Baas PW, Deitch JS, Black MM, Banker GA (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci U S A 85(21):8335–8339CrossRefGoogle Scholar
  18. 18.
    Kleele T, Marinkovic P, Williams PR, Stern S, Weigand EE, Engerer P, Naumann R, Hartmann J, Karl RM, Bradke F, Bishop D, Herms J, Konnerth A, Kerschensteiner M, Godinho L, Misgeld T (2014) An assay to image neuronal microtubule dynamics in mice. Nat Commun 5:4827.  https://doi.org/10.1038/ncomms5827CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gowrishankar S, Yuan P, Wu Y, Schrag M, Paradise S, Grutzendler J, De Camilli P, Ferguson SM (2015) Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques. Proc Natl Acad Sci U S A 112(28):E3699–E3708.  https://doi.org/10.1073/pnas.1510329112CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lee S, Sato Y, Nixon RA (2011) Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy. J Neurosci 31(21):7817–7830.  https://doi.org/10.1523/JNEUROSCI.6412-10.2011CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1(5):2406–2415.  https://doi.org/10.1038/nprot.2006.356CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Audrey Dong
    • 1
  • Vineet Vinay Kulkarni
    • 1
  • Sandra Maday
    • 1
    Email author
  1. 1.Department of NeurosciencePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations