Advertisement

A Computational Protocol for Detecting Somatic Mutations by Integrating DNA and RNA Sequencing

  • Matthew D. WilkersonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1878)

Abstract

Somatic mutation detection is a fundamental component of cancer genome research and of the molecular diagnosis of patients’ tumors. Traditionally, such efforts have focused on either DNA exome or whole genome sequencing; however, we recently have demonstrated that integrating multiple sequencing technologies provides increased statistical power to detect mutations, particularly in low-purity tumors upon the addition of RNA sequencing to DNA exome sequencing. The computational protocol described here enables an investigator to detect somatic mutations through integrating DNA and RNA sequencing from patient-matched tumor DNA, tumor RNA, and germline specimens via the open source software, UNCeqR.

Key words

Somatic Mutation Cancer UNCeqR Open source Protocol 

References

  1. 1.
    Roychowdhury S, Chinnaiyan AM (2016) Translating cancer genomes and transcriptomes for precision oncology. CA Cancer J Clin 66:75–88CrossRefGoogle Scholar
  2. 2.
    Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, Cao X, Kalyana-Sundaram S, Sam L, Balbin OA, Quist MJ et al (2011) Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med 3:111ra121CrossRefGoogle Scholar
  3. 3.
    Clinical Lung Cancer Genome P, Network Genomic M (2013) A genomics-based classification of human lung tumors. Sci Transl Med 5:209ra153Google Scholar
  4. 4.
    Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11:685–696CrossRefGoogle Scholar
  5. 5.
    Wilkerson MD, Cabanski CR, Sun W, Hoadley KA, Walter V, Mose LE, Troester MA, Hammerman PS, Parker JS, Perou CM, Hayes DN (2014) Integrated RNA and DNA sequencing improves mutation detection in low purity tumors. Nucleic Acids Res 42:e107CrossRefGoogle Scholar
  6. 6.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079CrossRefGoogle Scholar
  7. 7.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760CrossRefGoogle Scholar
  8. 8.
    Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm SA, Perou CM et al (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38:e178CrossRefGoogle Scholar
  9. 9.
    Troester MA, Hoadley KA, D’Arcy M, Cherniack AD, Stewart C, Koboldt DC, Robertson AG, Mahurkar S, Shen H, Wilkerson MD et al (2016) DNA defects, epigenetics, and gene expression in cancer-adjacent breast: a study from The Cancer Genome Atlas. NPJ Breast Cancer 2:16007CrossRefGoogle Scholar
  10. 10.
    Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, Wang X, Qiao JW, Cao S, Petralia F et al (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534:55–62CrossRefGoogle Scholar
  11. 11.
    Liu W, Snell JM, Jeck WR, Hoadley KA, Wilkerson MD, Parker JS, Patel N, Mlombe YB, Mulima G, Liomba NG et al (2016) Subtyping sub-Saharan esophageal squamous cell carcinoma by comprehensive molecular analysis. JCI Insight 1(16):e88755Google Scholar
  12. 12.
    Fishbein L, Leshchiner I, Walter V, Danilova L, Robertson AG, Johnson AR, Lichtenberg TM, Murray BA, Ghayee HK, Else T et al (2017) Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell 31:181–193CrossRefGoogle Scholar
  13. 13.
    Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C et al (2015) Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163:506–519CrossRefGoogle Scholar
  14. 14.
    The Cancer Genome Atlas Research Network (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550CrossRefGoogle Scholar
  15. 15.
    The Cancer Genome Atlas Research Network (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525CrossRefGoogle Scholar
  16. 16.
    The Cancer Genome Atlas Research Network (2015) Genomic classification of cutaneous melanoma. Cell 161:1681–1696CrossRefGoogle Scholar
  17. 17.
    The Cancer Genome Atlas Research Network (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517:576–582CrossRefGoogle Scholar
  18. 18.
    Brady SW, McQuerry JA, Qiao Y, Piccolo SR, Shrestha G, Jenkins DF, Layer RM, Pedersen BS, Miller RH, Esch A et al (2017) Combating subclonal evolution of resistant cancer phenotypes. Nat Commun 8:1231CrossRefGoogle Scholar
  19. 19.
    Field MG, Durante MA, Anbunathan H, Cai LZ, Decatur CL, Bowcock AM, Kurtenbach S, Harbour JW (2018) Punctuated evolution of canonical genomic aberrations in uveal melanoma. Nat Commun 9:116CrossRefGoogle Scholar
  20. 20.
    Yee T (2008) The {VGAM} package. R News 8:28–39Google Scholar
  21. 21.
  22. 22.
    Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, Diekhans M, Dreszer TR, Fujita PA, Guruvadoo L, Haeussler M et al (2014) The UCSC genome browser database: 2014 update. Nucleic Acids Res 42:D764–D770CrossRefGoogle Scholar
  23. 23.
    Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, Salit M (2014) Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat Biotechnol 32(3):246–251CrossRefGoogle Scholar
  24. 24.
    Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311CrossRefGoogle Scholar
  25. 25.
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291CrossRefGoogle Scholar
  26. 26.
    Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S et al (2015) COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811CrossRefGoogle Scholar
  27. 27.
    Cabanski CR, Wilkerson MD, Soloway M, Parker JS, Liu J, Prins JF, Marron JS, Perou CM, Hayes DN (2013) BlackOPs: increasing confidence in variant detection through mappability filtering. Nucleic Acids Res 41:e178CrossRefGoogle Scholar
  28. 28.
    Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson M, Lander ES, Getz G (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31:213–219CrossRefGoogle Scholar
  29. 29.
    Pickrell JK, Gilad Y, Pritchard JK (2012) Comment on “Widespread RNA and DNA sequence differences in the human transcriptome”. Science 335:1302 author reply 1302CrossRefGoogle Scholar
  30. 30.
    Guo Y, Li J, Li CI, Long J, Samuels DC, Shyr Y (2012) The effect of strand bias in Illumina short-read sequencing data. BMC Genomics 13:666CrossRefGoogle Scholar
  31. 31.
    Jiang Y, Turinsky AL, Brudno M (2015) The missing indels: an estimate of indel variation in a human genome and analysis of factors that impede detection. Nucleic Acids Res 43:7217–7228CrossRefGoogle Scholar
  32. 32.
    Mose LE, Wilkerson MD, Hayes DN, Perou CM, Parker JS (2014) ABRA: improved coding indel detection via assembly-based realignment. Bioinformatics 30:2813–2815CrossRefGoogle Scholar
  33. 33.
    Stouffer SA, Suchman EA, DeVinney LC, Star SA, Williams RM (1949) Studies in social psychology in World War II. Princeton University Press, Princeton, NJGoogle Scholar
  34. 34.
    Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164CrossRefGoogle Scholar
  35. 35.
    Obenchain V, Lawrence M, Carey V, Gogarten S, Shannon P, Morgan M (2014) VariantAnnotation: a Bioconductor package for exploration and annotation of genetic variants. Bioinformatics 30:2076–2078CrossRefGoogle Scholar
  36. 36.
    Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Collaborative Health Initiative Research Program, The American Genome Center, Department of Anatomy, Physiology and GeneticsUniformed Services UniversityBethesdaUSA

Personalised recommendations