Advertisement

Genomic Manipulations of the Diazotroph Azotobacter vinelandii

  • Patricia C. Dos Santos
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1876)

Abstract

The biological reduction of nitrogen gas to ammonia is limited to a select group of nitrogen-fixing prokaryotes. While nitrogenase is the catalyst of nitrogen fixation in these biological systems, a consortium of additional gene products is required for the synthesis, activation, and catalytic competency of this oxygen-sensitive metalloenzyme. Thus, the biochemical complexity of this process often requires functional studies and isolation of gene products from the native nitrogen-fixing organisms. The strict aerobe Azotobacter vinelandii is the best-studied model bacterium among diazotrophs. This chapter provides a description of procedures for targeted genomic manipulation and isolation of A. vinelandii strains. These methods have enabled identification and characterization of gene products with roles in nitrogen fixation and other related aspects of metabolism. The ability to modify and control expression levels of targeted sequences provides a biotechnological tool to uncover molecular details associated with nitrogen fixation, as well as to exploit this model system as a host for expression of oxygen-sensitive proteins.

Key words

Azotobacter vinelandii Selection Transformation Congression Rescue Strain construction Phenotype Gene inactivation Arabinose Sucrose promoter 

References

  1. 1.
    Hoffman BM, Lukoyanov D, Yang ZY et al (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062CrossRefGoogle Scholar
  2. 2.
    Smil V (2000) Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. MIT Press, Cambridge, MassachusettsGoogle Scholar
  3. 3.
    Burns RC, Hardy RW (1975) Nitrogen fixation in bacteria and higher plants. Mol Biol Biochem Biophys 21:1–189Google Scholar
  4. 4.
    Kim J, Rees DC (1994) Nitrogenase and biological nitrogen-fixation. Biochemistry 33:389–397CrossRefGoogle Scholar
  5. 5.
    Dos Santos PC, Fang Z, Mason SW et al (2013) Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13:162CrossRefGoogle Scholar
  6. 6.
    Eady RR (1996) Structure-function-relationships of alternative nitrogenases. Chem Rev 96:3013–3030CrossRefGoogle Scholar
  7. 7.
    Boyd ES, Hamilton TL, Peters JW (2011) An alternative path for the evolution of biological nitrogen fixation. Front Microbiol.  https://doi.org/10.3389/fmicb.2011.00205
  8. 8.
    Hu Y, Ribbe MW (2016) Biosynthesis of the metalloclusters of nitrogenases. Annu Rev Biochem 85:455–483CrossRefGoogle Scholar
  9. 9.
    Einsle O, Tezcan FA, Andrade SL et al (2002) Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297:1696–1700CrossRefGoogle Scholar
  10. 10.
    Spatzal T, Aksoyoglu M, Zhang L et al (2011) Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334:940CrossRefGoogle Scholar
  11. 11.
    Dos Santos PC, Igarashi RY, Lee HI et al (2005) Substrate interactions with the nitrogenase active site. Acc Chem Res 38:208–214CrossRefGoogle Scholar
  12. 12.
    Dos Santos PC, Mayer SM, Barney BM et al (2007) Alkyne substrate interaction within the nitrogenase MoFe protein. J Inorg Biochem 101(11–12):1642–1648CrossRefGoogle Scholar
  13. 13.
    Yang ZY, Ledbetter R, Shaw S et al (2016) Evidence that the Pi release event is the rate-limiting step in the nitrogenase catalytic cycle. Biochemistry 55:3625–3635CrossRefGoogle Scholar
  14. 14.
    Dos Santos PC, Dean DR (2014) A retrospective on the discovery of [Fe-S] cluster biosynthetic machineries in Azotobacter vinelandii. In: Rouault T (ed) Iron-Sulfur Clusters in Chemistry and Biology, vol 1. Verlag Walter de Gruyter, Berlin, pp 267–296Google Scholar
  15. 15.
    Thorneley RNF, Lowe DJ (1985) Kinetics and mechanism of the nitrogenase enzyme system. In: Spiro TG (ed) Molybdenum Enzymes. Wiley, New York, pp 221–284Google Scholar
  16. 16.
    Shah VK, Davis LC, Brill WJ (1972) Nitrogenase. I. Repression and derepression of the iron-molybdenum and iron proteins of nitrogenase in Azotobacter vinelandii. Biochim Biophys Acta 256:498–511CrossRefGoogle Scholar
  17. 17.
    O'carroll IP, Dos Santos PC (2011) Genomic analysis of nitrogen fixation. Methods Mol Biol 766:49–65CrossRefGoogle Scholar
  18. 18.
    Boyd ES, Costas AM, Hamilton TL et al (2015) Evolution of molybdenum nitrogenase during the transition from anaerobic to aerobic metabolism. J Bacteriol 197:1690–1699CrossRefGoogle Scholar
  19. 19.
    Mehta MP, Baross JA (2006) Nitrogen fixation at 92 degrees C by a hydrothermal vent archaeon. Science 314:1783–1786CrossRefGoogle Scholar
  20. 20.
    Ohkuma M, Noda S, Kudo T (1999) Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Appl Environ Microbiol 65:4926–4934PubMedPubMedCentralGoogle Scholar
  21. 21.
    Postgate JR (2000) Biology nitrogen fixation: fundamentals. Philos Trans R Soc B 296:375–385CrossRefGoogle Scholar
  22. 22.
    Dos Santos PC, Dean DR, Hu Y et al (2004) Formation and insertion of the nitrogenase iron-molybdenum cofactor. Chem Rev 104:1159–1173CrossRefGoogle Scholar
  23. 23.
    Jacobson MR, Brigle KE, Bennett LT et al (1989) Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. J Bacteriol 171:1017–1027CrossRefGoogle Scholar
  24. 24.
    Christiansen J, Goodwin PJ, Lanzilotta WN et al (1998) Catalytic and biophysical properties of a nitrogenase apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Biochemistry 37:12611–12623CrossRefGoogle Scholar
  25. 25.
    Joerger RD, Bishop PE (1988) Nucleotide sequence and genetic analysis of the nifB-nifQ region from Azotobacter vinelandii. J Bacteriol 170:1475–1487CrossRefGoogle Scholar
  26. 26.
    Setubal JC, Dos Santos P, Goldman BS et al (2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 191:4534–4545CrossRefGoogle Scholar
  27. 27.
    Kelly MJ, Poole RK, Yates MG et al (1990) Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air. J Bacteriol 172:6010–6019CrossRefGoogle Scholar
  28. 28.
    Curatti L, Brown CS, Ludden PW et al (2005) Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii. Proc Natl Acad Sci U S A 102:6291–6296CrossRefGoogle Scholar
  29. 29.
    Hamilton TL, Ludwig M, Dixon R et al (2011) Transcriptional profiling of nitrogen fixation in Azotobacter vinelandii. J Bacteriol 193:4477–4486CrossRefGoogle Scholar
  30. 30.
    Rodriguez-Quinones F, Bosch R, Imperial J (1993) Expression of the nifBfdxNnifOQ region of Azotobacter vinelandii and its role in nitrogenase activity. J Bacteriol 175:2926–2935CrossRefGoogle Scholar
  31. 31.
    Jacobson MR, Cash VL, Weiss MC et al (1989) Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet 219:49–57CrossRefGoogle Scholar
  32. 32.
    Hakoyama T, Niimi K, Watanabe H et al (2009) Host plant genome overcomes the lack of a bacterial gene for symbiotic nitrogen fixation. Nature 462:514–517CrossRefGoogle Scholar
  33. 33.
    Chen JS, Toth J, Kasap M (2001) Nitrogen-fixation genes and nitrogenase activity in Clostridium acetobutylicum and Clostridium beijerinckii. J Ind Microbiol Biotechnol 27:281–286CrossRefGoogle Scholar
  34. 34.
    Kennedy C, Rudnick P, Macdonald ML et al (2005) Genus III. Azotobacter Beijerinck 1901, 567al. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey's manual of systematic bacteriol – the proteobacteria. Springer, New York, pp 384–402Google Scholar
  35. 35.
    Wang L, Zhang L, Liu Z et al (2013) A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli. PLoS Genet 9:e1003865CrossRefGoogle Scholar
  36. 36.
    Lopez-Torrejon G, Jimenez-Vicente E, Buesa JM et al (2016) Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast. Nat Commun 7:11426CrossRefGoogle Scholar
  37. 37.
    Yang J, Xie X, Yang M et al (2017) Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity. Proc Natl Acad Sci U S A 114:E2460–E2465CrossRefGoogle Scholar
  38. 38.
    Oldroyd GE, Dixon R (2014) Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol 26:19–24CrossRefGoogle Scholar
  39. 39.
    Bolin JT, Ronco AE, Morgan TV et al (1993) The unusual metal clusters of nitrogenase: structural features revealed by x-ray anomalous diffraction studies of the MoFe protein from Clostridium pasteurianum. Proc Natl Acad Sci U S A 90:1078–1082CrossRefGoogle Scholar
  40. 40.
    Chen JS, Multani JS, Mortenson LE (1973) Structural investigation of nitrogenase components from Clostridium pasteurianum and comparison with similar components of other organisms. Biochim Biophys Acta 310:51–59CrossRefGoogle Scholar
  41. 41.
    Brill WJ (1980) Biochemical genetics of nitrogen fixation. Microbiol Rev 44:449–467PubMedPubMedCentralGoogle Scholar
  42. 42.
    Sickerman NS, Hu Y, Ribbe MW (2017) Nitrogenase assembly: strategies and procedures. Methods Enzymol 595:261–302CrossRefGoogle Scholar
  43. 43.
    Jimenez-Vicente E, Navarro-Rodriguez M, Poza-Carrion C et al (2014) Role of Azotobacter vinelandii FdxN in FeMo-co biosynthesis. FEBS Lett 588:512–516CrossRefGoogle Scholar
  44. 44.
    Lukoyanov D, Khadka N, Dean DR et al (2017) Photoinduced reductive elimination of H2 from the nitrogenase dihydride (Janus) state involves a FeMo-cofactor-H2 intermediate. Inorg Chem 56:2233–2240CrossRefGoogle Scholar
  45. 45.
    Jacobson MR, Premakumar R, Bishop PE (1986) Transcriptional regulation of nitrogen fixation by molybdenum in Azotobacter vinelandii. J Bacteriol 167:480–486CrossRefGoogle Scholar
  46. 46.
    Lipman JG (1903) Experiments on the transformation and fixation of nitrogen by bacteria. In: New Jersey state agricultural experiment station, 17th annual report. Fb&c Limited, New Jersey, pp 215–285Google Scholar
  47. 47.
    Bush JA, Wilson PW (1959) A non-gummy chromogenic strain of Azotobacter vinelandii. Nature 184:381–384CrossRefGoogle Scholar
  48. 48.
    Burk D, Lineweaver H (1930) The Influence of Fixed Nitrogen on Azotobacter. J Bacteriol 19:389–414PubMedPubMedCentralGoogle Scholar
  49. 49.
    Dos Santos PC (2012) Molecular biology and genetic engineering in nitrogen fixation. Methods Mol Biol 766:81–92CrossRefGoogle Scholar
  50. 50.
    George SE, Costenbader CJ, Melton T (1985) Diauxic growth in Azotobacter vinelandii. J Bacteriol 164:866–871PubMedPubMedCentralGoogle Scholar
  51. 51.
    Chen YP, Lopezdevictoria G, Lovell CR (1993) Utilization of aromatic-compounds as carbon and energy-sources during growth and N2-Fixation by free-living nitrogen-fixing bacteria. Arch Microbiol 159:207–212CrossRefGoogle Scholar
  52. 52.
    Johnson DC, Unciuleac MC, Dean DR (2006) Controlled expression and functional analysis of iron-sulfur cluster biosynthetic components within Azotobacter vinelandii. J Bacteriol 188:7551–7561CrossRefGoogle Scholar
  53. 53.
    Bertsova YV, Bogachev AV, Skulachev VP (2001) Noncoupled NADH: ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. J Bacteriol 183:6869–6874CrossRefGoogle Scholar
  54. 54.
    Fang FC, Helinski DR (1991) Broad-host-range properties of plasmid RK2: importance of overlapping genes encoding the plasmid replication initiation protein TrfA. J Bacteriol 173:5861–5868CrossRefGoogle Scholar
  55. 55.
    Leung PK, Loo JFC, Seak LCU et al (2017) Characterization of Azotobacter vinelandii and kits for its synthetic biology applications. bioRxiv doi:  https://doi.org/10.1101/188482
  56. 56.
    Peralta-Gil M, Segura D, Guzman J et al (2002) Expression of the Azotobacter vinelandii poly-beta-hydroxybutyrate biosynthetic phbBAC operon is driven by two overlapping promoters and is dependent on the transcriptional activator PhbR. J Bacteriol 184:5672–5677CrossRefGoogle Scholar
  57. 57.
    Dos Santos PC, Johnson DC, Ragle BE et al (2007) Controlled expression of nif and isc iron-sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems. J Bacteriol 189:2854–2862CrossRefGoogle Scholar
  58. 58.
    Page W, Von Tigerstrom M (1979) Optimal conditions for transformation of Azotobacter vinelandii. J Bacteriol 139:1058–1061PubMedPubMedCentralGoogle Scholar
  59. 59.
    Sorger GJ, Trofimenkoff D (1970) Nitrogenaseless mutants of Azotobacter vinelandii. Proc Natl Acad Sci U S A 65:74–80CrossRefGoogle Scholar
  60. 60.
    Rey L, Maier RJ (1997) Cytochrome c terminal oxidase pathways of Azotobacter vinelandii: analysis of cytochrome c4 and c5 mutants and up-regulation of cytochrome c-dependent pathways with N2 fixation. J Bacteriol 179:7191–7196CrossRefGoogle Scholar
  61. 61.
    Bandyopadhyay S, Naik SG, O'carroll IP et al (2008) A proposed role for the Azotobacter vinelandii NfuA protein as an intermediate iron-sulfur cluster carrier. J Biol Chem 283:14092–14099CrossRefGoogle Scholar
  62. 62.
    Oelze J (2000) Respiratory protection of nitrogenase in Azotobacter species: is a widely held hypothesis unequivocally supported by experimental evidence? FEMS Microbiol Rev 24:321–333CrossRefGoogle Scholar
  63. 63.
    Bishop PE, Rizzo TM, Bott KF (1985) Molecular cloning of nif DNA from Azotobacter vinelandii. J Bacteriol 162:21–28PubMedPubMedCentralGoogle Scholar
  64. 64.
    Page WJ, Grant GA (1987) Effect of mineral iron on the development of transformation competence in Azotobacter vinelandii. FEMS Microbiol Lett 41:257–261CrossRefGoogle Scholar
  65. 65.
    Nagpal P, Jafri S, Reddy MA et al (1989) Multiple chromosomes of Azotobacter vinelandii. J Bacteriol 171:3133–3138CrossRefGoogle Scholar
  66. 66.
    Bishop PE, Hawkins ME, Eady RR (1986) Nitrogen fixation in molybdenum-deficient continuous culture by a strain of Azotobacter vinelandii carrying a deletion of the structural genes for nitrogenase (nifHDK). Biochem J 238:437–442CrossRefGoogle Scholar
  67. 67.
    Brigle KE, Setterquist RA, Dean DR et al (1987) Site-directed mutagenesis of the nitrogenase MoFe protein of Azotobacter vinelandii. Proc Natl Acad Sci U S A 84:7066–7069CrossRefGoogle Scholar
  68. 68.
    Morgan TV, Lundell DJ, Burgess BK (1988) Azotobacter vinelandii ferredoxin I: cloning, sequencing, and mutant analysis. J Biol Chem 263:1370–1375PubMedGoogle Scholar
  69. 69.
    Goodwin PJ, Agar JN, Roll JT et al (1998) The Azotobacter vinelandii NifEN complex contains two identical [4Fe- 4S] clusters. Biochemistry 37:10420–10428CrossRefGoogle Scholar
  70. 70.
    Suh MH, Pulakat L, Gavini N (2003) Functional expression of a fusion-dimeric MoFe protein of nitrogenase in Azotobacter vinelandii. J Biol Chem 278:5353–5360CrossRefGoogle Scholar
  71. 71.
    Kennedy C, Gamal R, Humphrey R et al (1986) The nifH, nifM and nifN genes of Azotobacter vinelandii: characterisation by Tn5 mutagenesis and isolation from pLAFR1 gene banks. Mol Gen Genet 205:318–325CrossRefGoogle Scholar
  72. 72.
    Wu G, Hill S, Kelly MJ et al (1997) The cydR gene product, required for regulation of cytochrome bd expression in the obligate aerobe Azotobacter vinelandii, is an Fnr-like protein. Microbiology 143:2197–2207CrossRefGoogle Scholar
  73. 73.
    Contreras A, Maldonado R, Casadesus J (1991) Tn5 mutagenesis and insertion replacement in Azotobacter vinelandii. Plasmid 25:76–80CrossRefGoogle Scholar
  74. 74.
    Bishop PE, Premakumar R, Dean DR et al (1986) Nitrogen fixation by Azotobacter vinelandii strains having deletions in structural genes for nitrogenase. Science 232:92–94CrossRefGoogle Scholar
  75. 75.
    Walmsley J, Toukdarian A, Kennedy C (1994) The role of regulatory genes nifA, vnfA, anfA, nfrX, ntrC, and rpoN in expression of genes encoding the three nitrogenases of Azotobacter vinelandii. Arch Microbiol 162:422–429CrossRefGoogle Scholar
  76. 76.
    Premakumar R, Loveless TM, Bishop PE (1994) Effect of amino acid substitutions in a potential metal-binding site of AnfA on expression from the anfH promoter in Azotobacter vinelandii. J Bacteriol 176:6139–6142CrossRefGoogle Scholar
  77. 77.
    Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  78. 78.
    Wiig JA, Hu Y, Ribbe MW (2011) NifEN-B complex of Azotobacter vinelandii is fully functional in nitrogenase FeMo cofactor assembly. Proc Natl Acad Sci U S A 108:8623–8627CrossRefGoogle Scholar
  79. 79.
    Hu Y, Fay AW, Ribbe MW (2005) Identification of a nitrogenase FeMo cofactor precursor on NifEN complex. Proc Natl Acad Sci U S A 102:3236–3241CrossRefGoogle Scholar
  80. 80.
    Soboh B, Igarashi RY, Hernandez JA et al (2006) Purification of a NifEN protein complex that contains bound Mo and a FeMo-co precursor from an Azotobacter vinelandii delta nifHDK strain. J Biol Chem 281:36701–36709CrossRefGoogle Scholar
  81. 81.
    Johnson DC, Dos Santos PC, Dean DR (2005) NifU and NifS are required for the maturation of nitrogenase and cannot replace the function of isc-gene products in Azotobacter vinelandii. Biochem Soc Trans 33:90–93CrossRefGoogle Scholar
  82. 82.
    Schleif R (2010) AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action. FEMS Microbiol Rev 34:779–796CrossRefGoogle Scholar
  83. 83.
    Venkatesh TV, Reddy MA, Das HK (1990) Cloning and characterization of the Azotobacter vinelandii recA gene and construction of a recA deletion mutant. Mol Gen Genet 224:482–486CrossRefGoogle Scholar
  84. 84.
    Zheng L, Cash VL, Flint DH et al (1998) Assembly of iron-sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 273:13264–13272CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryWake Forest UniversityWinston-SalemUSA

Personalised recommendations