Advertisement

Electron Paramagnetic Resonance Spectroscopy of Metalloproteins

  • Andrew Jasniewski
  • Yilin Hu
  • Markus W. Ribbe
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1876)

Abstract

Electron paramagnetic resonance (EPR) is a spectroscopic technique that is sensitive to the presence of unpaired electrons and, therefore, is a powerful tool for the study of proteins containing complex metallocofactors. When a magnetic field is applied to a transition metal-containing system with unpaired electrons and the sample is irradiated with microwaves, a spin transition can be observed. Through detailed analysis of the resulting EPR spectrum, one can extract parameters that can provide information about the electronic environment of the unpaired electrons found on the metal centers. Here, a basic introduction to the theory of EPR and the instrumentation is presented along with procedures for obtaining EPR spectra of sensitive metalloprotein species.

Key words

Electron paramagnetic resonance EPR Electron spin resonance ESR Anaerobic sample preparation Power saturation Metallocofactors Metalloproteins 

Notes

Acknowledgments

The authors are supported by the National Science Foundation grant CHE-1609553 (to M.W.R. and Y.H.), and thank Caleb Hiller for providing the EPR spectra used in this chapter.

References

  1. 1.
    Palmer G (2000) Electron paramagnetic resonance of metalloproteins. In: Que L Jr (ed) Physical methods in bioinorganic chemistry: spectroscopy and magnetism. University Science Books, Sausalito, CAGoogle Scholar
  2. 2.
    Bencini A, Gatteschi D (1999) Electron paramagnetic resonance spectroscopy. In: Solomon EI, Lever ABP (eds) Inorganic electronic structure and spectroscopy, volume I: methodology, vol 1. Wiley, New York, NYGoogle Scholar
  3. 3.
    Eaton GR, Eaton SS, Barr DP et al (2010) Quantitative EPR. Springer-Verlag, WienCrossRefGoogle Scholar
  4. 4.
    Chasteen ND, Snetsinger PA (2000) ESEEM and ENDOR spectroscopy. In: Que L Jr (ed) Physical methods in bioinorganic chemistry: spectroscopy and magnetism. University Science Books, Sausalito, CAGoogle Scholar
  5. 5.
    Hendrich MP, Debrunner PG (1998) EPR of non-Kramers systems in biology. In: Eaton GR, Eaton SS, Salikhov KM (eds) Foundations of modern EPR. World Scientific, SingaporeGoogle Scholar
  6. 6.
    Hoffman BM, DeRose VJ, Doan PE et al (1993) Metalloenzyme active-site structure and function through multifrequency cw and pulsed ENDOR. In: Berliner LJ, Reuben J (eds) Biological Magnetic Resonance. Plenum, New York, NYGoogle Scholar
  7. 7.
    Onate YA, Finnegan MG, Hales BJ et al (1993) Variable temperature magnetic circular dichroism studies of reduced nitrogenase iron proteins and [4Fe-4S]+ synthetic analog clusters. Biochim Biophys Acta 1164:113–123CrossRefGoogle Scholar
  8. 8.
    Lindahl PA, Day EP, Kent TA et al (1985) Mössbauer, EPR, and magnetization studies of the Azotobacter vinelandii Fe protein. Evidence for a [4Fe-4S]1+ cluster with spin S = 3/2. J Biol Chem 260:11160–11173PubMedGoogle Scholar
  9. 9.
    Watt GD, McDonald JW (1985) Electron paramagnetic resonance spectrum of the iron protein of nitrogenase: existence of a g = 4 spectral component and its effect on spin quantization. Biochemistry 24:7226–7231CrossRefGoogle Scholar
  10. 10.
    Hu Y, Fay AW, Ribbe MW (2005) Identification of a nitrogenase FeMo cofactor precursor on NifEN complex. Proc Natl Acad Sci U S A 102:3236–3241CrossRefGoogle Scholar
  11. 11.
    Surerus KK, Hendrich MP, Christie PD et al (1992) Möessbauer and integer-spin EPR of the oxidized P-clusters of nitrogenase: POX is a non-Kramers system with a nearly degenerate ground doublet. J Am Chem Soc 114:8579–8590CrossRefGoogle Scholar
  12. 12.
    Kamp C, Silakov A, Winkler M et al (2008) Isolation and first EPR characterization of the [FeFe]-hydrogenases from green algae. Biochim Biophys Acta 1777:410–416CrossRefGoogle Scholar
  13. 13.
    Foerster S, Stein M, Brecht M et al (2003) Single crystal EPR studies of the reduced active site of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. J Am Chem Soc 125:83–93CrossRefGoogle Scholar
  14. 14.
    Bray RC, Vänngård T (1969) ‘Rapidly appearing’ molybdenum electron-paramagnetic-resonance signals from reduced xanthine oxidase. Biochem J 114:725–734CrossRefGoogle Scholar
  15. 15.
    Lindahl PA, Münck E, Ragsdale SW (1990) CO dehydrogenase from Clostridium thermoaceticum. EPR and electrochemical studies in CO2 and argon atmospheres. J Biol Chem 265:3873–3879PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineUSA
  2. 2.Department of ChemistryUniversity of California, IrvineIrvineUSA

Personalised recommendations