Skip to main content

X-Ray Absorption Spectroscopy of Metalloproteins

  • Protocol
  • First Online:
Metalloproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1876))

Abstract

X-ray absorption spectroscopy (XAS) has been widely used as a powerful local structural tool for studying the metal binding sites in metalloproteins, owing to its element specificity, chemical sensitivity, and minimum requirement for sample preparation. The principle subject of this chapter is to provide a general introduction of this technique to molecular biologists and biochemists, with the intention to fill the knowledge gaps in interdisciplinary communication and collaboration. An update of the XAS-based technique applied recently to metalloproteins is also briefly introduced at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Penner-Hahn JE (2005) Characterization of "spectroscopically quiet" metals in biology. Coordin Chem Rev 249:161–177

    Article  CAS  Google Scholar 

  2. Rigby K, Zhang L, Cobine PA et al (2007) Characterization of the cytochrome c oxidase assembly factor Cox19 of Saccharomyces cerevisiae. J Biol Chem 282:10233–10242

    Article  CAS  Google Scholar 

  3. Coyne HJ 3rd, Ciofi-Baffoni S, Banci L et al (2007) The characterization and role of zinc binding in yeast Cox4. J Biol Chem 282:8926–8934

    Article  CAS  Google Scholar 

  4. Lee PA, Citrin PH, Eisenberger P et al (1981) Extended X-ray absorption fine-structure - its strengths and limitations as a structural tool. Rev Mod Phys 53:769–806

    Article  CAS  Google Scholar 

  5. Teo BK (1986) Exafs: basic principles and data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  6. Koningsberger DC, Prins R (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. John Wiley and Sons, New York, NY

    Google Scholar 

  7. Rehr JJ, Albers RC (2000) Theoretical approaches to X-ray absorption fine structure. Rev Mod Phys 72:621–654

    Article  CAS  Google Scholar 

  8. Ascone I, Fourme R, Hasnain S et al (2005) Metallogenomics and biological X-ray absorption spectroscopy. J Synchrotron Radiat 12:1–3

    Article  CAS  Google Scholar 

  9. George GN, Pickering IJ (2007) X-ray absorption spectroscopy in biology and chemistry. Nato Sec Sci B Phys:97–119

    Google Scholar 

  10. Newville M (2014) Fundamentals of XAFS. Rev Mineral Geochem 78:33–74

    Article  CAS  Google Scholar 

  11. Lang ND, Williams AR (1978) Theory of atomic chemisorption on simple metals. Phys Rev B 18:616–636

    Article  CAS  Google Scholar 

  12. Rehr JJ, Kas JJ, Vila FD et al (2010) Parameter-free calculations of X-ray spectra with FEFF9. Phys Chem Chem Phys 12:5503–5513

    Article  CAS  Google Scholar 

  13. George GN (1997) X-ray absorption spectroscopy of molybdenum enzymes. J Biol Inorg Chem 2:790–796

    Article  CAS  Google Scholar 

  14. Harris HH, George GN, Rajagopalan KV (2006) High-resolution EXAFS of the active site of human sulfite oxidase: Comparison with density functional theory and X-ray crystallographic results. Inorg Chem 45:493–495

    Article  CAS  Google Scholar 

  15. Jiang DT, Chen N, Zhang L et al (2007) XAFS at the canadian light source. AIP Conf Proc 882:893–895

    Article  CAS  Google Scholar 

  16. Winick H (1995) Synchrotron radiation sources — a primer. World Scientific, Singapore

    Book  Google Scholar 

  17. Fontecilla-Camps JC, Nicolet Y (eds) (2014) Metalloproteins: methods and protocols. Humana Press, New York, pp 1–299

    Google Scholar 

  18. Mattle D, Zhang L, Sitsel O et al (2015) A sulfur-based transport pathway in Cu+-ATPases. EMBO Rep 16:728–740

    Article  CAS  Google Scholar 

  19. Ralle M, Lutsenko S, Blackburn NJ (2003) X-ray absorption spectroscopy of the copper chaperone Hah1 reveals a linear two-coordinate Cu(I) center capable of adduct formation with exogenous thiols and phosphines. J Biol Chem 278:23163–23170

    Article  CAS  Google Scholar 

  20. Pickering IJ, Gumaelius L, Harris HH et al (2006) Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ Sci Technol 40:5010–5014

    Article  CAS  Google Scholar 

  21. Bjornsson R, Delgado-Jaime MU, Lima FA et al (2015) Molybdenum L-edge XAS spectra of MoFe nitrogenase. Z Anorg Allg Chem 641:65–71

    Article  CAS  Google Scholar 

  22. Liu T, Ramesh A, Ma Z et al (2007) CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol 3:60–68

    Article  CAS  Google Scholar 

  23. Stern EA, Heald SM (1983) Basic principles and applications of EXAFS. In: Koch EE (ed) Handbook of Synchrotron Radiation. North-Holland, Amsterdam, New York, Oxford

    Google Scholar 

  24. Sayers DE, Stern EA, Lytle FW (1971) New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray absorption fine structure. Physl Rev Lett 27:1204

    Article  CAS  Google Scholar 

  25. Stern EA (1988) Theory of EXAFS. In: Koningsberger DC, Prins R (eds) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. John Wiley and Sons, New York, NY

    Google Scholar 

  26. Tierney DL, Fee JA, Ludwig ML et al (1995) X-ray absorption spectroscopy of the iron site in Escherichia coli Fe(III) superoxide dismutase. Biochemistry 34:1661–1668

    Article  CAS  Google Scholar 

  27. Grabolle M, Haumann M, Muller C et al (2006) Rapid loss of structural motifs in the manganese complex of oxygenic photosynthesis by X-ray irradiation at 10-300 k. J Biol Chem 281:4580–4588

    Article  CAS  Google Scholar 

  28. George GN, Pickering IJ, Pushie MJ et al (2012) X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples. J Synchrotron Radiat 19:875–886

    Article  CAS  Google Scholar 

  29. Pushie MJ, Nienaber KH, McDonald A et al (2014) Combined EXAFS and DFT structure calculations provide structural insights into the 1:1 multi-histidine complexes of Cu(II), Cu(I), and Zn(II) with the tandem octarepeats of the mammalian prion protein. Chemistry 20:9770–9783

    Article  CAS  Google Scholar 

  30. Zhang L, Lichtmannegger J, Summer KH et al (2009) Tracing copper-thiomolybdate complexes in a prospective treatment for Wilson's disease. Biochemistry 48:891–897

    Article  CAS  Google Scholar 

  31. Wu G, Zhang Y, Ribaud L et al (1998) Multitemperature resonance-diffraction and structural study of the mixed-valence complex [Fe3O(OOCC(CH3)3)6(C5H5N)3]. Inorg Chem 37:6078–6083

    Article  CAS  Google Scholar 

  32. Einsle O, Andrade SL, Dobbek H et al (2007) Assignment of individual metal redox states in a metalloprotein by crystallographic refinement at multiple X-ray wavelengths. J Am Chem Soc 129:2210–2211

    Article  CAS  Google Scholar 

  33. Zhang L, Kaiser JT, Meloni G et al (2013) The sixteenth iron in the nitrogenase MoFe protein. Angew Chem Int Ed Engl 52:10529–10532

    Article  CAS  Google Scholar 

  34. Spatzal T, Schlesier J, Burger EM et al (2016) Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement. Nat Commun 7:10902

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The data presented in this chapter were collected at the Stanford Synchrotron Radiation Lightsource and Canadian Light Source. EXAFSPAK and IFFEFIT were used for analyzing data and generating figures in this chapter. The author thanks Dr. De-Tong Jiang at the Guelph University and Dr. Graham George at the University of Saskatchewan for invaluable discussions and contributions to the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, L. (2019). X-Ray Absorption Spectroscopy of Metalloproteins. In: Hu, Y. (eds) Metalloproteins. Methods in Molecular Biology, vol 1876. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8864-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8864-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8863-1

  • Online ISBN: 978-1-4939-8864-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics