Investigating BCL-2 Family Protein Interactions in Yeast

  • Stéphen ManonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1877)


Among the different models used to study the biochemical properties and function of proteins of the Bcl-2 family, their heterologous expression in the yeast Saccharomyces cerevisiae may look out of place. However, when grown under adequate conditions, yeast cells have mitochondria that have similar properties as those of mammalian cells, and are able to be targeted by mammalian Bcl-2 family members. Yeast thus provides a neutral cellular background to study how proteins of the Bcl-2 family interact with mitochondria, alone or as a couple (or a combination of more proteins). Most studies done in our laboratory has been done on the proapoptotic protein Bax and the antiapoptotic protein Bcl-xL, but yeast can bring about useful information about every protein of the family, in terms of their capacity to interact and to regulate the permeabilization of the outer mitochondrial membrane.

Key words

BCL-2 family Bax Bcl-xL Mitochondria Yeast 



The work in the lab of the author is supported by the CNRS and the Université of Bordeaux. The author wishes to thank the PhD students who have optimized these protocols, namely Muriel Priault, Hubert Arokium, and Thibaud T. Renault.


  1. 1.
    Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD, Lee EF, Yao S, Robin AY, Smith BJ, Huang DC, Kluck RM, Adams JM, Colman PM (2013) Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152:519–531CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Simonyan L, Légiot A, Lascu I, Durand G, Giraud MF, Gonzalez C, Manon S (2017) The substitution of Proline 168 favors Bax oligomerization and stimulates its interaction with LUVs and mitochondria. Biochim Biophys Acta 1859:1144–1155CrossRefGoogle Scholar
  3. 3.
    Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC (2000) Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345:271–278CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Manon S, Chaudhuri B, Guérin M (1997) Release of cytochrome c and decrease of cytochrome c oxidase in Bax-expressing yeast cells, and prevention of these effects by coexpression of Bcl-xL. FEBS Lett 415:29–32CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Jürgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci U S A 95:4997–5002CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Carmona-Gutierrez D, Eisenberg T, Büttner S, Meisinger C, Kroemer G, Madeo F (2010) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17:763–773CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Renault TT, Dejean LM, Manon S (2017) A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2. Mech Ageing Dev 161:201–210CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Priault M, Cartron PF, Camougrand N, Antonsson B, Vallette FM, Manon S (2003) Investigation of the role of the C-terminus of Bax and of tc-Bid on Bax interaction with yeast mitochondria. Cell Death Differ 10:1068–1077CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Arokium H, Camougrand N, Vallette FM, Manon S (2004) Studies of the interaction of substituted mutants of BAX with yeast mitochondria reveal that the C-terminal hydrophobic alpha-helix is a second ART sequence and plays a role in the interaction with anti-apoptotic BCL-xL. J Biol Chem 279:52566–52573CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Arokium H, Ouerfelli H, Velours G, Camougrand N, Vallette FM, Manon S (2007) Substitutions of potentially phosphorylatable serine residues of Bax reveal how they may regulate its interaction with mitochondria. J Biol Chem 282:35104–35112CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Simonyan L, Renault TT, Novais MJ, Sousa MJ, Côrte-Real M, Camougrand N, Gonzalez C, Manon S (2016) Regulation of Bax/mitochondria interaction by AKT. FEBS Lett 590:13–21CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Garenne D, Renault TT, Manon S (2016) Bax mitochondrial relocation is linked to its phosphorylation and its interaction with Bcl-xL. Microb Cell 3:597–605CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Renault TT, Teijido O, Missire F, Ganesan YT, Velours G, Arokium H, Beaumatin F, Llanos R, Athané A, Camougrand N, Priault M, Antonsson B, Dejean LM, Manon S (2015) Bcl-xL stimulates Bax relocation to mitochondria and primes cells to ABT-737. Int J Biochem Cell Biol 64:136–146CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Gonzalvez F, Bessoule JJ, Rocchiccioli F, Manon S, Petit PX (2005) Role of cardiolipin on tBid and tBid/Bax synergistic effects on yeast mitochondria. Cell Death Differ 12:659–667CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Gallenne T, Gautier F, Oliver L, Hervouet E, Noël B, Hickman JA, Geneste O, Cartron PF, Vallette FM, Manon S, Juin P (2009) Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members. J Cell Biol 185:279–290CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Prudent J, Popgeorgiev N, Bonneau B, Thibaut J, Gadet R, Lopez J, Gonzalo P, Rimokh R, Manon S, Houart C, Herbomel P, Aouacheria A, Gillet G (2013) Bcl-wav and the mitochondrial calcium uniporter drive gastrula morphogenesis in zebrafish. Nat Commun 4:2330CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Bellot G, Cartron PF, Er E, Oliver L, Juin P, Armstrong LC, Bornstein P, Mihara K, Manon S, Vallette FM (2007) TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax. Cell Death Differ 14:785–794CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Renault TT, Grandier-Vazeille X, Arokium H, Velours G, Camougrand N, Priault M, Teijido O, Dejean LM, Manon S (2012) The cytosolic domain of human Tom22 modulates human Bax mitochondrial translocation and conformation in yeast. FEBS Lett 586:116–121CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361PubMedPubMedCentralGoogle Scholar
  20. 20.
    Garí E, Piedrafita L, Aldea M, Herrero E (1997) A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 13:837–848CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut de Biochimie et de Génétique Cellulaires, UMR 5095CNRS & Université de Bordeaux, Campus CareireBordeauxFrance

Personalised recommendations