Reconstitution and Characterization of BCL-2 Family Proteins in Lipid Bilayer Nanodiscs

  • Yong Yao
  • Francesca M. MarassiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1877)


The BCL-2 family proteins are key regulators of programmed cell death or apoptosis, and represent important targets for the development of anticancer drugs. Because their functions are intimately connected with intracellular membranes, it is important to perform structural and activity studies in precisely characterized samples that include phospholipids and capture the features of the native physiological environment as closely as possible. NMR studies and activity assays based on lipid bilayer nanodiscs are ideally suited for this purpose: they enable the conformations and interactions of these proteins to be probed at atomic resolution in their membrane-associated states. Here we describe detailed protocols for generating the protein components and the reconstituted nanodisc samples suitable for NMR studies and functional assays. The protocols focus on the BCL-2 family protein BCL-XL, a dominant inhibitor of programmed cell death and a major anticancer drug target. The protocols are relatively straightforward. Provided care is taken to ensure protein integrity and sample homogeneity, BCL-XL can be readily reconstituted in nanodiscs, with its hydrophobic C-terminal tail anchored through the nanodisc lipid bilayer, and its folded N-terminal head and ligand binding pocket exposed to the aqueous solution. We anticipate that BCL-2 samples prepared with these protocols will advance structural and mechanistic studies for this important protein family.

Key words

BCL-2 Apoptosis Membrane Nanodisc Structure NMR 



This work was supported by grants from the National Institutes of Health (R01CA179087, R01GM100265, P41EB002031, and P30CA030199).


  1. 1.
    Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O'Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681CrossRefPubMedGoogle Scholar
  2. 2.
    Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB (1993) bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74:597–608CrossRefPubMedGoogle Scholar
  3. 3.
    Lessene G, Czabotar PE, Sleebs BE, Zobel K, Lowes KN, Adams JM, Baell JB, Colman PM, Deshayes K, Fairbrother WJ, Flygare JA, Gibbons P, Kersten WJ, Kulasegaram S, Moss RM, Parisot JP, Smith BJ, Street IP, Yang H, Huang DC, Watson KG (2013) Structure-guided design of a selective BCL-X(L) inhibitor. Nat Chem Biol 9:390–397CrossRefPubMedGoogle Scholar
  4. 4.
    Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, Yoon HS, Shuker SB, Chang BS, Minn AJ, Thompson CB, Fesik SW (1997) Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275:983–986CrossRefGoogle Scholar
  5. 5.
    Kvansakul M, Hinds MG (2013) Structural biology of the Bcl-2 family and its mimicry by viral proteins. Cell Death Dis 4:e909CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gonzalez-Garcia M, Perez-Ballestero R, Ding L, Duan L, Boise LH, Thompson CB, Nunez G (1994) bcl-XL is the major bcl-x mRNA form expressed during murine development and its product localizes to mitochondria. Development 120:3033–3042PubMedGoogle Scholar
  7. 7.
    Fang W, Rivard JJ, Mueller DL, Behrens TW (1994) Cloning and molecular characterization of mouse bcl-x in B and T lymphocytes. J Immunol 153:4388–4398PubMedGoogle Scholar
  8. 8.
    Mizuguchi M, Sohma O, Takashima S, Ikeda K, Yamada M, Shiraiwa N, Ohta S (1996) Immunochemical and immunohistochemical localization of Bcl-x protein in the rat central nervous system. Brain Res 712:281–286CrossRefPubMedGoogle Scholar
  9. 9.
    Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139:1281–1292CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Todt F, Cakir Z, Reichenbach F, Youle RJ, Edlich F (2013) The C-terminal helix of Bcl-x(L) mediates Bax retrotranslocation from the mitochondria. Cell Death Differ 20:333–342CrossRefPubMedGoogle Scholar
  11. 11.
    Yao Y, Fujimoto LM, Hirshman N, Bobkov AA, Antignani A, Youle RJ, Marassi FM (2015) Conformation of BCL-XL upon membrane integration. J Mol Biol 427:2262–2270CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yao Y, Nisan D, Fujimoto LM, Antignani A, Barnes A, Tjandra N, Youle RJ, Marassi FM (2016) Characterization of the membrane-inserted C-terminus of cytoprotective BCL-XL. Protein Expr Purif 122:56–63CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Franzin CM, Choi J, Zhai D, Reed JC, Marassi FM (2004) Structural studies of apoptosis and ion transport regulatory proteins in membranes. Magn Reson Chem 42:172–179CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46:2059–2069CrossRefPubMedGoogle Scholar
  15. 15.
    Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126:3477–3487CrossRefPubMedGoogle Scholar
  16. 16.
    Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK, Atkins WM, Sligar SG (2009) Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Viegas A, Viennet T, Etzkorn M (2016) The power, pitfalls and potential of the nanodisc system for NMR-based studies. Biol Chem 397:1335–1354CrossRefPubMedGoogle Scholar
  18. 18.
    Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135:1919–1925CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fesik SW, Zuiderweg ER (1990) Heteronuclear three-dimensional NMR spectroscopy of isotopically labelled biological macromolecules. Q Rev Biophys 23:97–131CrossRefPubMedGoogle Scholar
  20. 20.
    Bax A, Grzesiek S (1993) Methodological advances in protein NMR. Acc Chem Res 26:131–138CrossRefGoogle Scholar
  21. 21.
    Cavanagh J, Fairbrother WJ, Palmer AG, Skelton NJ (1996) Protein NMR spectroscopy: principles and practice. Academic Press, San DiegoGoogle Scholar
  22. 22.
    Clore GM, Gronenborn AM (1998) NMR structure determination of proteins and protein complexes larger than 20 kDa. Curr Opin Chem Biol 2:564–570CrossRefPubMedGoogle Scholar
  23. 23.
    Ferentz AE, Wagner G (2000) NMR spectroscopy: a multifaceted approach to macromolecular structure. Q Rev Biophys 33:29–65CrossRefPubMedGoogle Scholar
  24. 24.
    Kay LE (2001) Nuclear magnetic resonance methods for high molecular weight proteins: a study involving a complex of maltose binding protein and beta-cyclodextrin. Methods Enzymol 339:174–203CrossRefPubMedGoogle Scholar
  25. 25.
    Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefPubMedGoogle Scholar
  26. 26.
    Johnson BA, Blevins RA (1995) NMR view: a computer program for the visualization and analysis of NMR data. J Biomol NMR 5:603–614Google Scholar
  27. 27.
    Goddard TD, Kneller DG (2004) SPARKY 3. University of California, San FranciscoGoogle Scholar
  28. 28.
    Denisov AY, Chen G, Sprules T, Moldoveanu T, Beauparlant P, Gehring K (2006) Structural model of the BCL-w-BID peptide complex and its interactions with phospholipid micelles. Biochemistry 45:2250–2256CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sanford Burnham Prebys Medical Discovery InstituteLa JollaUSA

Personalised recommendations