Advertisement

BCL-2 Protein Family Interaction Analysis by Nuclear Magnetic Resonance Spectroscopy

  • Thomas P. Garner
  • Evripidis Gavathiotis
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1877)

Abstract

Biomolecular nuclear magnetic resonance (NMR) is a powerful and versatile method for studying both protein–protein interactions (PPIs) and protein–small molecule binding. NMR has been used extensively in the investigation of BCL-2 family proteins revealing the structure of key family members, identifying binding partners and interaction sites, and screening small molecule modulators. In this chapter we discuss the application of NMR to identify interaction sites and structure determination of protein–protein and protein–small molecule complexes using two examples.

Key words

Nuclear magnetic resonance (NMR) Protein–protein interactions (PPI) Chemical shift perturbation (CSP) Paramagnetic relaxation enhancement (PRE) BCL-2 family BCL-2 BAX MCL-1 

Notes

Acknowledgments

We would like to thank current and past members of the Gavathiotis Laboratory for contributing to the optimization of this protocol and research. This work was supported by an NCI grant 1R01CA178394 and awards from the Sidney Kimmel Foundation for Cancer Research, the Gabrielle’s Angels Foundation for Cancer Research, the Alexandrine and Alexander L. Sinsheimer Foundation, the Pershing Square Sohn Cancer Research Alliance, the American Heart Association Collaborative Science Award (15CSA26240000), the Fondation Leducq Transatlantic Network of Excellence grant (RA15CVD04) and the Irma T. Hirschl Trust Career Award. NMR data were collected with support from NIH awards 1S10OD016305 and P30 CA013330.

References

  1. 1.
    Qin J, Gronenborn AM (2014) Weak protein complexes: challenging to study but essential for life. FEBS J 281(8):1948–1949CrossRefPubMedGoogle Scholar
  2. 2.
    Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H (2016) Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Disc 15(9):605–619.  https://doi.org/10.1038/nrd.2016.109CrossRefGoogle Scholar
  3. 3.
    Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, Katz SG, Tu HC, Kim H, Cheng EH, Tjandra N, Walensky LD (2008) BAX activation is initiated at a novel interaction site. Nature 455(7216):1076–1081.  https://doi.org/10.1038/nature07396CrossRefPubMedGoogle Scholar
  4. 4.
    Moldoveanu T, Grace CR, Llambi F, Nourse A, Fitzgerald P, Gehring K, Kriwacki RW, Green DR (2013) BID-induced structural changes in BAK promote apoptosis. Nat Struct Mol Biol 20(5):589–597.  https://doi.org/10.1038/nsmb.2563CrossRefPubMedGoogle Scholar
  5. 5.
    Barclay LA, Wales TE, Garner TP, Wachter F, Lee S, Guerra RM, Stewart ML, Braun CR, Bird GH, Gavathiotis E, Engen JR, Walensky LD (2015) Inhibition of Pro-apoptotic BAX by a noncanonical interaction mechanism. Mol Cell 57(5):873–886.  https://doi.org/10.1016/j.molcel.2015.01.014CrossRefPubMedGoogle Scholar
  6. 6.
    Follis AV, Llambi F, Merritt P, Chipuk JE, Green DR, Kriwacki RW (2015) Pin1-induced proline isomerization in cytosolic p53 mediates BAX activation and apoptosis. Mol Cell 59(4):677–684.  https://doi.org/10.1016/j.molcel.2015.06.029CrossRefPubMedGoogle Scholar
  7. 7.
    Ma J, Edlich F, Bermejo GA, Norris KL, Youle RJ, Tjandra N (2012) Structural mechanism of Bax inhibition by cytomegalovirus protein vMIA. Proc Natl Acad Sci U S A 109(51):20901–20906.  https://doi.org/10.1073/pnas.1217094110CrossRefPubMedGoogle Scholar
  8. 8.
    Gavathiotis E, Reyna DE, Bellairs JA, Leshchiner ES, Walensky LD (2012) Direct and selective small-molecule activation of proapoptotic BAX. Nat Chem Biol 8(7):639–645.  https://doi.org/10.1038/nchembio.995CrossRefPubMedGoogle Scholar
  9. 9.
    Reyna DE, Garner TP, Lopez A, Kopp F, Choudhary GS, Sridharan A, Narayanagari SR, Mitchell K, Dong B, Bartholdy BA, Walensky LD, Verma A, Steidl U, Gavathiotis E (2017) Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute myeloid leukemia. Cancer Cell 32(4):490–505.e410.  https://doi.org/10.1016/j.ccell.2017.09.001CrossRefPubMedGoogle Scholar
  10. 10.
    Pritz JR, Wachter F, Lee S, Luccarelli J, Wales TE, Cohen DT, Coote P, Heffron GJ, Engen JR, Massefski W, Walensky LD (2017) Allosteric sensitization of proapoptotic BAX. Nat Chem Biol 13(9):961–967.  https://doi.org/10.1038/nchembio.2433CrossRefPubMedGoogle Scholar
  11. 11.
    Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O'Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of BCL-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681.  https://doi.org/10.1038/nature03579CrossRefGoogle Scholar
  12. 12.
    Petros AM, Dinges J, Augeri DJ, Baumeister SA, Betebenner DA, Bures MG, Elmore SW, Hajduk PJ, Joseph MK, Landis SK, Nettesheim DG, Rosenberg SH, Shen W, Thomas S, Wang X, Zanze I, Zhang H, Fesik SW (2006) Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. J Med Chem 49(2):656–663.  https://doi.org/10.1021/jm0507532CrossRefPubMedGoogle Scholar
  13. 13.
    Friberg A, Vigil D, Zhao B, Daniels RN, Burke JP, Garcia-Barrantes PM, Camper D, Chauder BA, Lee T, Olejniczak ET, Fesik SW (2013) Discovery of potent myeloid cell leukemia 1 (MCL-1) inhibitors using fragment-based methods and structure-based design. J Med Chem 56(1):15–30.  https://doi.org/10.1021/jm301448pCrossRefPubMedGoogle Scholar
  14. 14.
    Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH, Fairbrother WJ, Huang DC, Hymowitz SG, Jin S, Khaw SL, Kovar PJ, Lam LT, Lee J, Maecker HL, Marsh KC, Mason KD, Mitten MJ, Nimmer PM, Oleksijew A, Park CH, Park CM, Phillips DC, Roberts AW, Sampath D, Seymour JF, Smith ML, Sullivan GM, Tahir SK, Tse C, Wendt MD, Xiao Y, Xue JC, Zhang H, Humerickhouse RA, Rosenberg SH, Elmore SW (2013) ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19(2):202–208.  https://doi.org/10.1038/nm.3048CrossRefPubMedGoogle Scholar
  15. 15.
    Li R, Cheng C, Balasis ME, Liu Y, Garner TP, Daniel KG, Li J, Qin Y, Gavathiotis E, Sebti SM (2015) Design, synthesis and evaluation of marinopyrrole derivatives as selective inhibitors of MCL-1 binding to pro-apoptotic Bim and dual MCL-1/Bcl-xL inhibitors. Eur J Med Chem 90:315–331.  https://doi.org/10.1016/j.ejmech.2014.11.035CrossRefPubMedGoogle Scholar
  16. 16.
    Liu G, Poppe L, Aoki K, Yamane H, Lewis J, Szyperski T (2014) High-quality NMR structure of human anti-apoptotic protein domain MCL-1(171-327) for cancer drug design. PLoS One 9(5):e96521.  https://doi.org/10.1371/journal.pone.0096521CrossRefPubMedGoogle Scholar
  17. 17.
    Garner TP, Reyna DE, Priyadarshi A, Chen HC, Li S, Wu Y, Ganesan YT, Malashkevich VN, Almo SS, Cheng EH, Gavathiotis E (2016) An autoinhibited dimeric form of BAX regulates the BAX activation pathway. Mol Cell 63(3):485–497.  https://doi.org/10.1016/j.molcel.2016.06.010CrossRefPubMedGoogle Scholar
  18. 18.
    Bodenhausen G, Ruben DJ (1980) Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 69:185–189.  https://doi.org/10.1016/0009-2614(80)80041-8CrossRefGoogle Scholar
  19. 19.
    Kazimierczuk K, Orekhov V (2015) Non-uniform sampling: post-Fourier era of NMR data collection and processing. Magn Reson Chem 53:921–926.  https://doi.org/10.1002/mrc.4284CrossRefPubMedGoogle Scholar
  20. 20.
    Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4):687–696.  https://doi.org/10.1002/prot.20449CrossRefPubMedGoogle Scholar
  21. 21.
    Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Bio NMR 6(3):277–293Google Scholar
  22. 22.
    Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196.  https://doi.org/10.1021/jm051256oCrossRefPubMedGoogle Scholar
  23. 23.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comp Chem 31(2):455–461.  https://doi.org/10.1002/jcc.21334CrossRefGoogle Scholar
  24. 24.
    Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Bio 267(3):727–748.  https://doi.org/10.1006/jmbi.1996.0897CrossRefGoogle Scholar
  25. 25.
    Sjodt M, Clubb RT (2017) Nitroxide labeling of proteins and the determination of paramagnetic relaxation derived distance restraints for NMR studies. Bio-protocol 7:7.  https://doi.org/10.21769/BioProtoc.2207CrossRefGoogle Scholar
  26. 26.
    Tubert-Brohman I, Sherman W, Repasky M, Beuming T (2013) Improved docking of polypeptides with Glide. J Chem Inf Mod 53(7):1689–1699.  https://doi.org/10.1021/ci400128mCrossRefGoogle Scholar
  27. 27.
    London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O (2011) Rosetta FlexPepDock web server--high resolution modeling of peptide-protein interactions. Nucl Acid Res 39(Web Server issue):W249–W253.  https://doi.org/10.1093/nar/gkr431CrossRefGoogle Scholar
  28. 28.
    van Zundert GC, Bonvin AM (2014) Modeling protein-protein complexes using the HADDOCK webserver "modeling protein complexes with HADDOCK". Methods Mol Biol 1137:163–179.  https://doi.org/10.1007/978-1-4939-0366-5_12CrossRefPubMedGoogle Scholar
  29. 29.
    Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737.  https://doi.org/10.1021/ja026939xCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Thomas P. Garner
    • 1
    • 2
    • 3
    • 4
  • Evripidis Gavathiotis
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of BiochemistryAlbert Einstein College of MedicineBronxUSA
  2. 2.Department of MedicineAlbert Einstein College of MedicineBronxUSA
  3. 3.Albert Einstein Cancer CenterAlbert Einstein College of MedicineBronxUSA
  4. 4.Wilf Family Cardiovascular Research InstituteAlbert Einstein College of MedicineBronxUSA

Personalised recommendations