Advertisement

Fractionation Techniques to Increase Plant Proteome Coverage: Combining Separation in Parallel at the Protein and the Peptide Level

  • Martin Černý
  • Miroslav Berka
  • Hana Habánová
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1871)

Abstract

Peptide spectral libraries enable targeted identification and quantitation of low-abundance proteins in a complex plant proteome. Here we describe parallel protein and peptide fractionation techniques to improve plant proteome coverage and facilitate construction of spectral libraries.

Key words

Plant proteomics Protein fractionation Peptide fractionation C18 SCX PEG 

Notes

Acknowledgments

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601) and TE02000177 (TACR), and by Brno PhD Talent 2017 (funded by Brno City Municipality) and IGA grant no. IP 15/2017 to H.H.

References

  1. 1.
    Milo R (2013) What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays 35:1050–1055CrossRefGoogle Scholar
  2. 2.
    Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138:795–806CrossRefGoogle Scholar
  3. 3.
    Schubert OT, Gillet LC, Collins BC, Navarro P, Rosenberger G, Wolski WE et al (2015) Building high-quality assay libraries for targeted analysis of SWATH MS data. Nat Protoc 10(3):426–441CrossRefGoogle Scholar
  4. 4.
    Acquadro A, Flavo S, Mila S, Albo AG, Comino C, Moglia A, Lanteri S (2009) Proteomics in globe artichoke: protein extraction and sample complexity reduction by PEG fractionation. Electrophoresis 30(9):1594–1602CrossRefGoogle Scholar
  5. 5.
    Wang W-Q, Song B-Y, Deng Z-J, Wang Y, Liu S-J, Møller IM, Song S-Q (2015) Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation. Plant Physiol 167(4):1332–1350CrossRefGoogle Scholar
  6. 6.
    Cerna H, Černý M, Habánová H, Šafářová D, Abushamsiya K, Navrátil M, Brzobohatý B (2017) Proteomics offers insight to the mechanism behind Pisum sativum L. response to Pea seed-borne mosaic virus (PSbMV). J Proteomics 153:78–88CrossRefGoogle Scholar
  7. 7.
    Baldrianová J, Černý M, Novák J, Jedelský PL, Divíšková E, Brzobohatý B (2015) Arabidopsis proteome responses to the smoke-derived growth regulator karrikin. J Proteomics 120:7–20CrossRefGoogle Scholar
  8. 8.
    Batth TS, Francavilla C, Olsen JV (2014) Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. J Proteome Res 13:6176–6186CrossRefGoogle Scholar
  9. 9.
    Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906CrossRefGoogle Scholar
  10. 10.
    Mostovenko E, Hassan C, Rattke J, Deelder AM, van Veelen PA, Palmblad M (2013) Comparison of peptide and protein fractionation methods in proteomics. EuPA Open Proteom 1:30–37CrossRefGoogle Scholar
  11. 11.
    Černý M, Skalák J, Kurková B, Babuliaková E, Brzobohatý BB (2011) Using a commercial method for rubisco immunodepletion in analysis of plant proteome. Chemické listy 105:640–642Google Scholar
  12. 12.
    Černý M, Jedelský PL, Novák J, Schlosser A, Brzobohatý B (2014) Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. Plant Cell Environ 37:1641–1655CrossRefGoogle Scholar
  13. 13.
    Righetti PG, Boschetti E (2016) Global proteome analysis in plants by means of peptide libraries and applications. J Proteomics 143:3–14CrossRefGoogle Scholar
  14. 14.
    Stevens R, Stevens L, Price N (1983) The stabilities of various thiol compounds used in protein purifications. Biochem Educ 11:70CrossRefGoogle Scholar
  15. 15.
    Berka M, Luklová M (2017) Limited drying and its effect on peptide recovery rates. In: Polak O et al (eds) MendelNet 2017 Proceedings of 24th International PhD Students Conference. 24th International PhD Students Conference, Brno, November 2017. p 91Google Scholar
  16. 16.
    Nukarinen E, Tomanov K, Ziba I, Weckwerth W, Bachmair A (2017) Protein sumoylation and phosphorylation intersect in Arabidopsis signaling. Plant J 91:505–517CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Martin Černý
    • 1
  • Miroslav Berka
    • 1
  • Hana Habánová
    • 1
  1. 1.Faculty of AgriSciences, Department of Molecular Biology and Radiobiology, CEITEC – Central European Institute of Technology, Phytophthora Research CentreMendel University in BrnoBrnoCzech Republic

Personalised recommendations