Advertisement

Identification of Methylated Transcripts Using the TRIBE Approach

  • Lina Worpenberg
  • Tobias Jakobi
  • Christoph Dieterich
  • Jean-Yves Roignant
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1870)

Abstract

m6A is the most abundant internal modification on mRNA. Recent improvements of high-throughput sequencing techniques enables its detection at the transcriptome level, even at the nucleotide resolution. However most current techniques require large amounts of starting material to detect the modification. Here, we describe a complementary technique of standard meRIP-seq/miCLIP-seq approaches to identify methylated RNA using a low amount of material. We believe this approach can be applied in vivo to identify methylated targets in specific tissues or subpopulations of cells.

Key words

m6mRNA modification TRIBE dAdar Editing 

Notes

Acknowledgments

We thank members of the Dieterich and Roignant labs for their helpful comments and support. JYR was supported by the Deutsche Forschungsgemeinschaft (DFG) RO 4681/5-1, SPP1784 (RO 4681/9-1) and the Epitran COST action (CA16120). CD was supported by the DFG SPP1738 (DI 1501/5-1) and SPP1935 (DI 1501/8-1).

References

  1. 1.
    Grosjean H (2015) RNA modification: the Golden Period 1995–2015. RNA 21(4):625–626.  https://doi.org/10.1261/rna.049866.115 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515(7525):143–146.  https://doi.org/10.1038/nature13802 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397):201–206.  https://doi.org/10.1038/nature11112 CrossRefGoogle Scholar
  4. 4.
    Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149(7):1635–1646.  https://doi.org/10.1016/j.cell.2012.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, Leon-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES, Fink G, Regev A (2014) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159(1):148–162.  https://doi.org/10.1016/j.cell.2014.08.028 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lence T, Akhtar J, Bayer M, Schmid K, Spindler L, Ho CH, Kreim N, Andrade-Navarro MA, Poeck B, Helm M, Roignant JY (2016) m6A modulates neuronal functions and sex determination in Drosophila. Nature 540(7632):242–247.  https://doi.org/10.1038/nature20568 CrossRefPubMedGoogle Scholar
  7. 7.
    Lence T, Soller M, Roignant JY (2017) A fly view on the roles and mechanisms of the m6A mRNA modification and its players. RNA Biol 14:1–9.  https://doi.org/10.1080/15476286.2017.1307484 CrossRefGoogle Scholar
  8. 8.
    Roignant JY, Soller M (2017) m6A in mRNA: an ancient mechanism for fine-tuning gene expression. Trends Genet 33(6):380–390.  https://doi.org/10.1016/j.tig.2017.04.003 CrossRefPubMedGoogle Scholar
  9. 9.
    Zhao BS, Roundtree IA, He C (2017) Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 18(1):31–42.  https://doi.org/10.1038/nrm.2016.132 CrossRefGoogle Scholar
  10. 10.
    Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang CG, Riggs AD, He C, Shi Y (2017) m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 18(11):2622–2634.  https://doi.org/10.1016/j.celrep.2017.02.059 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jaffrey SR, Kharas MG (2017) Emerging links between m6A and misregulated mRNA methylation in cancer. Genome Med 9(1):2.  https://doi.org/10.1186/s13073-016-0395-8 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kwok CT, Marshall AD, Rasko JE, Wong JJ (2017) Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia. J Hematol Oncol 10(1):39.  https://doi.org/10.1186/s13045-017-0410-6 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, Huang H, Nachtergaele S, Dong L, Hu C, Qin X, Tang L, Wang Y, Hong GM, Huang H, Wang X, Chen P, Gurbuxani S, Arnovitz S, Li Y, Li S, Strong J, Neilly MB, Larson RA, Jiang X, Zhang P, Jin J, He C, Chen J (2017) FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell 31(1):127–141.  https://doi.org/10.1016/j.ccell.2016.11.017 CrossRefPubMedGoogle Scholar
  14. 14.
    Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, MacKay M, Schulman J, Famulare C, Patel M, Klimek VM, Garrett-Bakelman FE, Melnick A, Carroll M, Mason CE, Jaffrey SR, Kharas MG (2017) The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med 23(11):1369–1376.  https://doi.org/10.1038/nm.4416 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang S, Sun C, Li J, Zhang E, Ma Z, Xu W, Li H, Qiu M, Xu Y, Xia W, Xu L, Yin R (2017) Roles of RNA methylation by means of N6-methyladenosine (m6A) in human cancers. Cancer Lett 408:112–120.  https://doi.org/10.1016/j.canlet.2017.08.030 CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bogler O, Majumder S, He C, Huang S (2017) m6A Demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31(4):591–606 e596.  https://doi.org/10.1016/j.ccell.2017.02.013 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Grozhik AV, Linder B, Olarerin-George AO, Jaffrey SR (2017) Mapping m6A at individual-nucleotide resolution using crosslinking and immunoprecipitation (miCLIP). Methods Mol Biol 1562:55–78.  https://doi.org/10.1007/978-1-4939-6807-7_5 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Helm M, Motorin Y (2017) Detecting RNA modifications in the epitranscriptome: predict and validate. Nat Rev Genet 18(5):275–291.  https://doi.org/10.1038/nrg.2016.169 CrossRefGoogle Scholar
  19. 19.
    McMahon AC, Rahman R, Jin H, Shen JL, Fieldsend A, Luo W, Rosbash M (2016) TRIBE: Hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell 165(3):742–753.  https://doi.org/10.1016/j.cell.2016.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xu W, Rahman R, Rosbash M (2017) Mechanistic implications of enhanced editing by a hyperTRIBE RNA-binding protein. RNA 24:173.  https://doi.org/10.1261/rna.064691.117 CrossRefPubMedGoogle Scholar
  21. 21.
    Barraud P, Allain FH (2012) ADAR proteins: double-stranded RNA and Z-DNA binding domains. Curr Top Microbiol Immunol 353:35–60.  https://doi.org/10.1007/82_2011_145 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Eggington JM, Greene T, Bass BL (2011) Predicting sites of ADAR editing in double-stranded RNA. Nat Commun 2:319.  https://doi.org/10.1038/ncomms1324 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kuttan A, Bass BL (2012) Mechanistic insights into editing-site specificity of ADARs. Proc Natl Acad Sci U S A 109(48):E3295–E3304.  https://doi.org/10.1073/pnas.1212548109 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Piechotta M, Wyler E, Ohler U, Landthaler M, Dieterich C (2017) JACUSA: site-specific identification of RNA editing events from replicate sequencing data. BMC Bioinformatics 18(1)Google Scholar
  25. 25.
    Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842Google Scholar
  26. 26.
    Kan L, Grozhik AV, Vedanayagam J, Patil DP, Pang N, Lim KS, Huang YC, Joseph B, Lin CJ, Despic V, Guo J, Yan D, Kondo S, Deng WM, Dedon PC, Jaffrey SR, Lai EC (2017) The m6A pathway facilitates sex determination in Drosophila. Nat Commun 8:15737.  https://doi.org/10.1038/ncomms15737 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    FLEXBAR—flexible barcode and adapter processing for next-generation sequencing platformsGoogle Scholar
  28. 28.
    Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of RNA EpigeneticsInstitute of Molecular Biology (IMB)MainzGermany
  2. 2.Department of Internal Medicine IIIUniversity Hospital HeidelbergHeidelbergGermany
  3. 3.DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/MannheimHeidelbergGermany

Personalised recommendations