Recombinant Methioninase as a DNA Demethylation Agent

  • Robert M. HoffmanEmail author
  • David Machover
Part of the Methods in Molecular Biology book series (MIMB, volume 1866)


This chapter reviews the effect of methionine (MET) restriction, via treatment with recombinant methioninase (rMETase), on DNA methylation of cancer cells. CCRF-CEM human cancer cells were treated with rMETase under subcytotoxic conditions. The rMETase-treated cells contained significantly lower levels of genomic methylated DNA than did untreated control cells. DNA methylation was measured by incorporation of the methyl group of [3H]methyl-S-adenosylmethionine into DNA and by methylation-sensitive arbitrarily-primed PCR. DNA hypomethylation effected by rMETase was of similar extent to that effected by treatment of the cells with the DNA methyltransferase inhibitor 5-azacytidine.

Key words

Recombinant methioninase Cancer cells DNA hypomethylation Malignancy 


  1. 1.
    Diala ES, Hoffman RM (1982) Hypomethylation of HeLa cell DNA and the absence of 5-methylcytosine in SV40 and adenovirus (type 2) DNA: analysis by HPLC. Biochem Biophys Res Commun 107:19–26CrossRefGoogle Scholar
  2. 2.
    Diala ES, Cheah MSC, Rowitch D, Hoffman RM (1983) Extent of DNA methylation in human tumor cells. J Natl Cancer Inst 71:755–764PubMedGoogle Scholar
  3. 3.
    Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228:187–190CrossRefGoogle Scholar
  4. 4.
    Mudbhary R, Hoshida Y, Chernyavskaya Y, Jacob V, Villanueva A, Fiel MI, Chen X, Kojima K, Thung S, Bronson RT, Lachenmayer A, Revill K, Alsinet C, Sachidanandam R, Desai A, Senbanerjee S, Ukomadu C, Llovet JM, Sadler KC (2014) UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell 25:196–209CrossRefGoogle Scholar
  5. 5.
    Leodolter A, Alonso S, González B, Ebert MP, Vieth M, Röcken C, Wex T, Peitz U, Malfertheiner P, Perucho M (2015) Somatic DNA hypomethylation in H. pylori-associated high-risk gastritis and gastric cancer: enhanced somatic hypomethylation associates with advanced stage cancer. Clin Transl Gastroenterol 6:e85CrossRefGoogle Scholar
  6. 6.
    Liteplo RG, Kerbel RS (1987) Reduced levels of DNA 5-methylcytosine in metastatic variants of the human melanoma cell line MeWo. Cancer Res 47:2264–2267PubMedGoogle Scholar
  7. 7.
    Kim YI, Giuliano A, Hatch KD, Schneider A, Nour MA, Dallal GE, Selhub J, Mason JB (1994) Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer 74:893–899CrossRefGoogle Scholar
  8. 8.
    Gao F, Shi L, Russin J, Zeng L, Chang X, He S, Chen TC, Giannotta SL, Weisenberger DJ, Zada G, Mack WJ, Wang K (2013) DNA methylation in the malignant transformation of meningiomas. PLoS One 8:e54114CrossRefGoogle Scholar
  9. 9.
    Karpf AR, Matsui S (2005) Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res 65:8635–8639CrossRefGoogle Scholar
  10. 10.
    Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492CrossRefGoogle Scholar
  11. 11.
    Murakami T, Li S, Han Q, Tan Y, Kiyuna T, Igarashi K, Kawaguchi K, Hwang HK, Miyaki K, Singh AS, Nelson SD, Dry SM, Li Y, Hiroshima Y, Lwin TM, DeLong JC, Chishima T, Tanaka K, Bouvet M, Endo I, Eilber FC, Hoffman RM (2017) Recombinant methioninase effectively targets a Ewing’s sarcoma in a patient-derived orthotopic xenograft (PDOX) nude mouse model. Oncotarget 8:35630–35638PubMedPubMedCentralGoogle Scholar
  12. 12.
    Warburg O (1956) On the origin of cancer cells. Science 123:309–314CrossRefGoogle Scholar
  13. 13.
    Stern PH, Hoffman RM (1984) Elevated overall rates of transmethylation in cell lines from diverse human tumors. In Vitro 20:663–670CrossRefGoogle Scholar
  14. 14.
    Coalson DW, Mecham JO, Stern PH, Hoffman RM (1982) Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine dependent cancer cells. Proc Natl Acad Sci U S A 79:4248–4251CrossRefGoogle Scholar
  15. 15.
    Hoffman RM, Jacobsen SJ, Erbe RW (1978) Reversion to methionine independence by malignant rat and SV40-transformed human fibroblasts. Biochem Biophys Res Commun 82:228–234CrossRefGoogle Scholar
  16. 16.
    Hoffman RM, Jacobsen SJ, Erbe RW (1979) Reversion to methionine independence in simian virus 40-transformed human and malignant rat fibroblasts is associated with altered ploidy and altered properties of transformation. Proc Natl Acad Sci U S A 76:1313–1317CrossRefGoogle Scholar
  17. 17.
    Judde JG, Ellis M, Frost P (1989) Biochemical analysis of the role of transmethylation in the methionine dependence of tumor cells. Cancer Res 49:4859–4865PubMedGoogle Scholar
  18. 18.
    Machover D, Zittoun J, Saffroy R, Broët P, Giraudier S, Magnaldo T, Goldschmidt E, Debuire B, Orrico M, Tan Y, Mishal Z, Chevallier O, Tonetti C, Jouault H, Ulusakarya A, Tanguy ML, Metzger G, Hoffman RM (2002) Treatment of cancer cells with methioninase produces DNA hypomethylation and increases DNA synthesis. Cancer Res 62:4685–4689PubMedGoogle Scholar
  19. 19.
    Machover D, Zittoun J, Broe¨t P, Metzger G, Orrico M, Goldschmidt E, Schilf A, Tonetti C, Tan Y, Delmas-Marsalet B, Luccioni C, Falissard B, Hoffman RM (2001) Cytotoxic synergism of methioninase in combination with 5-fluorouracil and folinic acid. Biochem Pharmacol 61:867–876CrossRefGoogle Scholar
  20. 20.
    Carmichael J, Degraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47:936–942PubMedGoogle Scholar
  21. 21.
    Robertson KD, Jones PA (2000) DNA methylation: past, present and future directions. Carcinogenesis 21:461–467CrossRefGoogle Scholar
  22. 22.
    Widschwendter M, Jones PA (2002) The potential prognostic, predictive, and therapeutic values of DNA methylation in cancer. Clin Cancer Res 8:17–21PubMedGoogle Scholar
  23. 23.
    Jutterman R, Li E, Jaenisch R (1994) Toxicity of 5-aza-2-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci U S A 91:11797–11801CrossRefGoogle Scholar
  24. 24.
    Karpf AR, Moore BC, Ririe TO, Jones DA (2001) Activation of the p53 DNA damage response pathway after inhibition of DNA methyltransferase by 5-aza-2-deoxycytidine. Mol Pharmacol 59:751–757CrossRefGoogle Scholar
  25. 25.
    Sambrook J, Russell DW (2000) Isolation of high-molecular-weight DNA from mammalian cells using proteinase K and phenol. In: Molecular cloning: a laboratory manual, vol 1, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 6.4–6.12Google Scholar
  26. 26.
    Duesberg P, Li R (2003) Multistep carcinogenesis: a chain reaction of aneuploidizations. Cell Cycle 2:202–210CrossRefGoogle Scholar
  27. 27.
    Hoffman RM (2017) The wayward methyl group and the cascade to cancer. Cell Cycle 16:825–829CrossRefGoogle Scholar
  28. 28.
    Hoffman RM (2017) Is DNA methylation the new guardian of the genome? Molecular Cytogenetics 10:11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.AntiCancer, Inc.San DiegoUSA
  2. 2.Department of SurgeryUniversity of CaliforniaSan DiegoUSA
  3. 3.Hopital Paul BrousseVillejuif CedexFrance

Personalised recommendations