Advertisement

l-[Methyl-11C] Methionine-Positron-Emission Tomography (MET-PET)

  • Robert M. HoffmanEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1866)

Abstract

Methionine (MET) dependence is a cancer-specific metabolic abnormality that is due to MET overuse for aberrant transmethylation reactions. [11C]-MET is very useful for positron-emission tomography (PET) due to MET overuse in malignant tumors. Many benefits of MET-PET have been demonstrated. MET-PET can differentiate recurrent glioma and necrosis. [11C]-MET-PET can also predict prognosis in gliomas better than [18F]-FDG PET. [11C]-MET-PET is better than MRI for predicting survival in low-grade glioma (LGG). MET-PET has greater specificity for detecting residual tumor after surgery than MRI.

Key words

Cancer Methionine dependence Methoinine uptake Transmethylation Positron-emission tomography PET imaging MET-PET [11C]-MET Hoffman effect 

References

  1. 1.
    Hoffman RM (2015) Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey. Expert Opin Biol Ther 15:21–31CrossRefGoogle Scholar
  2. 2.
    Hoffman RM (2017) The wayward methyl group and the cascade to cancer. Cell Cycle 16:825–829CrossRefGoogle Scholar
  3. 3.
    Coalson DW, Mecham JO, Stern PH, Hoffman RM (1982) Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine dependent cancer cells. Proc Natl Acad Sci U S A 79:4248–4251CrossRefGoogle Scholar
  4. 4.
    Hoffman RM, Erbe RW (1976) High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci U S A 73:1523–1527CrossRefGoogle Scholar
  5. 5.
    Stern PH, Hoffman RM (1984) Elevated overall rates of transmethylation in cell lines from diverse human tumors in vitro 20:663–670Google Scholar
  6. 6.
    Murakami T, Li S, Han Q, Tan Y, Kiyuna T, Igarashi K, Kawaguchi K, Hwang HK, Miyaki K, Singh AS, Nelson SD, Dry SM, Li Y, Hiroshima Y, Lwin TM, DeLong JC, Chishima T, Tanaka K, Bouvet M, Endo I, Eilber FC, Hoffman RM (2017) Recombinant methioninase effectively targets a Ewing’s sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget 8:35630–35638PubMedPubMedCentralGoogle Scholar
  7. 7.
    Kawaguchi K, Igarashi K, Li S, Han Q, Tan Y, Kiyuna T, Miyake Y, Murakami T, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Unno M, Eilber FC, Hoffman RM (2017) Combination treatment with recombinant methioninase enables temozolomide to arrest a BRAF V600E melanoma growth in a patient-derived orthotopic xenograft. Oncotarget 8:85516–85525PubMedPubMedCentralGoogle Scholar
  8. 8.
    Kawaguchi K, Igarashi K, Li S, Han Q, Tan Y, Miyake K, Kiyuna T, Miyake M, Murakami T, Chmielowski S, Nelson SD, Russell TA, Dry SM, Li Y, Unno M, Eilber FC, Hoffman RM (2018) Recombinant methioninase (rMETase) is an effective therapeutic for BRAF-V600E-negative as well as -positive melanoma in patient-derived orthotopic xenograft (PDOX) mouse models. Oncotarget 9:915–923Google Scholar
  9. 9.
    Igarashi K, Kawaguchi K, Li S, Han Q, Tan Y, Murakami T, Kiyuna T, Miyake K, Miyake M, Singh AS, Eckhadt MA, Nelson SD, Russell TA, Dry SM, Li Y, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Singh RS, Eilber FC, Hoffman RM (2018) Recombinant methioninase in combination with DOX overcomes first-line DOX resistance in a patient-derived orthotopic xenograft nude-mouse model of undifferentiated spindle-cell sarcoma. Cancer Lett 417:168–173CrossRefGoogle Scholar
  10. 10.
    Igarashi K, Li S, Han Q, Tan Y, Kawaguchi K, Murakami T, Kiyuna T, Miyake K, Li Y, Nelson SD, Dry SM, Singh AS, Elliott I, Russell TA, Eckhadt MA, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM (2018) Growth of a doxorubicin-resistant undifferentiated spindle-cell sarcoma PDOX is arrested by metabolic targeting with recombinant methioninase. J Cell Biochem 119:3537–3544CrossRefGoogle Scholar
  11. 11.
    Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Miyake K, Kiyuna T, Miyake M, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Singh AS, Eckardt MA, Unno M, Eilber FC, Hoffman RM (2018) Intra-tumor L-methionine level highly correlates with tumor size in both pancreatic cancer and melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse models. Oncotarget 9:11119–11125PubMedPubMedCentralGoogle Scholar
  12. 12.
    Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Kiyuna T, Miyake K, Miyake M, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Eckhardt MA, Unno M, Eilber FC, Hoffman RM (2018) Targeting methionine with oral recombinant methioninase (o-rMETase) arrests a patient-derived orthotopic xenograft (PDOX) model of BRAF-V600E mutant melanoma: implications for clinical cancer therapy and prevention. Cell Cycle 17:356–361CrossRefGoogle Scholar
  13. 13.
    Warburg O (1956) On the origin of cancer cells. Science 123:309–314CrossRefGoogle Scholar
  14. 14.
    Derlon JM, Bourdet C, Bustany P, Chatel M, Theron J, Darcel F, Syrota A (1989) [11C]L-methionine uptake in gliomas. Neurosurgery 25:720–728CrossRefGoogle Scholar
  15. 15.
    Mineura K, Sasajima T, Suda Y, Kowada M, Shishido F, Uemura K (1990) Amino acid study of cerebral gliomas using positron emission tomography—analysis of (11C-methyl)-L-methionine uptake index. Neurol Med Chir 30:997–1002CrossRefGoogle Scholar
  16. 16.
    Ogawa T, Inugami A, Hatazawa J, Kanno I, Murakami M, Yasui N, Mineura K, Uemura K (1996) Clinical positron emission tomography for brain tumors: comparison of fluorodeoxyglucose F 18 and L-methyl-11C-methionine. Am J Neuroradiol 17:345–353PubMedGoogle Scholar
  17. 17.
    Ogawa T, Shishido F, Kanno I, Inugami A, Fujita H, Murakami M, Shimosegawa E, Ito H, Hatazawa J, Okudera T et al (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186:45–53CrossRefGoogle Scholar
  18. 18.
    Tovi M, Lilja A, Bergstrom M, Ericsson A, Bergstrom K, Hartman M (1990) Delineation of gliomas with magnetic resonance imaging using Gd-DTPA in comparison with computed tomography and positron emission tomography. Acta Radiol 1:417–429CrossRefGoogle Scholar
  19. 19.
    Willemsen AT, van Waarde A, Paans AM, Pruim J, Luurtsema G, Go KG, Vaalburg W (1995) In vivo protein synthesis rate determination in primary or recurrent brain tumors using L-[1-11C]-tyrosine and PET. J Nucl Med 36:411–419PubMedGoogle Scholar
  20. 20.
    Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K, Senda M, Ishii K, Hirakawa K, Ohno K (2005) Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507CrossRefGoogle Scholar
  21. 21.
    Tamura K, Yoshikawa K, Ishikawa H, Hasebe M, Tsuji H, Yanagi T, Suzuki K, Kubo A, Tsujii H (2009) Carbon-11-methionine PET imaging of choroidal melanoma and the time course after carbon ion beam radiotherapy. Anticancer Res 29:1507–1514Google Scholar
  22. 22.
    Lilja A, Lundqvist H, Olsson Y, Spannare B, Gullberg P, Langstrom B (1989) Positron emission tomography and computed tomography in differential diagnosis between recurrent or residual glioma and treatment-induced brain lesions. Acta Radiol 30:121–128CrossRefGoogle Scholar
  23. 23.
    Ogawa T, Inugami A, Hatazawa J, Kanno I, Murakami M, Yasui N et al (1995) Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F 18 and l-methyl-11C-methionine. Am J Neuroradiol 17:345–353Google Scholar
  24. 24.
    Ogawa T, Kanno I, Shishido F, Inugami A, Higano S, Fujita H et al (1991) Clinical value of PET withl8F-fluorodeoxyglucose and L-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol 32:197–202CrossRefGoogle Scholar
  25. 25.
    De Witte O, Goldberg I, Wikler D, Rorive S, Damhaut P, Monclus M, Salmon I, Brotchi J, Goldman S (2001) Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 95:746–750CrossRefGoogle Scholar
  26. 26.
    Tsuyuguchi N, Takami T, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Nishikawa M, Ohata K, Torii K, Morino M, Nishio A, Hara M (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery—in malignant glioma. Ann Nucl Med 18:291–296CrossRefGoogle Scholar
  27. 27.
    García-Garzon JR, Villasboas-Rosciolesi D, Baquero M, Bassa P, Soler M, Riera E (2016) A false-negative case of primary central nervous system lymphoma on 11C-methionine PET and intense 18F-FDG uptake. Clin Nucl Med 41:664–665CrossRefGoogle Scholar
  28. 28.
    Bosnyák E, Kamson DO, Robinette NL, Barger GR, Mittal S, Juhász C (2016) Tryptophan PET predicts spatial and temporal patterns ofpost-treatment glioblastoma progression detected by contrast-enhanced MRI. J Neuro-Oncol 126:317–325CrossRefGoogle Scholar
  29. 29.
    Jung TY, Min JJ, Bom HS, Jung S, Kim IY, Lim SH, Kim DY, Kwon SY (2017) Prognostic value of post-treatment metabolic tumor volume from 11C-methionine PET/CT in recurrent malignant glioma. Neurosurg Rev 40:223–229CrossRefGoogle Scholar
  30. 30.
    Kardan A, Satter M (2016) Advanced methionine positron-emission tomography imaging for brain tumor diagnosis, surgical planning, and treatment. In: Handbook of Neuro-oncology Neuroimaging, Academic Press, Cambridge, MA, pp 371–384CrossRefGoogle Scholar
  31. 31.
    Kobayashi K, Hirata K, Yamaguchi S, Manabe O, Terasaka S, Kobayashi H, Shiga T, Hattori N, Tanaka S, Kuge Y, Tamaki N (2015) Prognostic value of volume-based measurements on (11)C-methionine PET in glioma patients. Eur J Nucl Med Mol Imaging 42:1071–1080CrossRefGoogle Scholar
  32. 32.
    Chung JK, Kim YK, Kim SK, Lee YJ, Paek S, Yeo JS, Jeong JM, Lee DS, Jung HW, Lee MC (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:176–182CrossRefGoogle Scholar
  33. 33.
    Zhao C, Zhang Y, Wang J (2014) A meta-analysis on the diagnostic performance of (18)F-FDG and (11)C-methionine PET for differentiating brain tumors. Am J Neuroradiol 35:1058–1065CrossRefGoogle Scholar
  34. 34.
    Xu W, Gao L, Shao A, Zheng J, Zhang J (2017) The performance of 11C-methionine PET in the differential diagnosis of glioma recurrence. Oncotarget 8:91030–91039PubMedPubMedCentralGoogle Scholar
  35. 35.
    Singhal T, Narayanan TK, Jacobs MP, Bal C, Mantil JC (2012) 11C-methionine PET for grading and prognostication in gliomas: a comparison study with 18F-FDG PET and contrast enhancement on MRI. J Nucl Med 53:1709–1715CrossRefGoogle Scholar
  36. 36.
    Chen W, Silverman DH (2008) Advances in evaluation of primary brain tumors. Semin Nucl Med 38:240–250CrossRefGoogle Scholar
  37. 37.
    Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J (2008) 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 10:1–18CrossRefGoogle Scholar
  38. 38.
    Herholz K, Hölzer T, Bauer B, Schröder R, Voges J, Ernestus RI, Mendoza G, Weber-Luxenburger G, Löttgen J, Thiel A, Wienhard K, Heiss WD (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322CrossRefGoogle Scholar
  39. 39.
    Grosu AL, Weber WA, Riedel E, Jeremic B, Nieder C, Franz M, Gumprecht H, Jaeger R, Schwaiger M, Molls M (2005) L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys 63:64–74CrossRefGoogle Scholar
  40. 40.
    Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, Slart RH (2013) Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging 40:615–635CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.AntiCancer, Inc.San DiegoUSA
  2. 2.Department of SurgeryUniversity of CaliforniaSan DiegoUSA

Personalised recommendations