Safety and Toxicity of Recombinant Methioninase and Polyethylene Glycol (PEG) Recombinant Methioninase in Primates

  • Robert M. HoffmanEmail author
  • Zhijian Yang
  • Yuying Tan
  • Qinghong Han
  • Shukuan Li
  • Shigeo Yagi
Part of the Methods in Molecular Biology book series (MIMB, volume 1866)


Methionine (MET) is a general metabolic therapeutic target in cancer, whereby cancer cells have an elevated requirement for MET, termed MET dependence. We have developed recombinant l-methionine α-deamino-γ-mercaptomethane lyase (recombinant methioninase [rMETase, EC]) as targeted therapy of all cancer types. Pharmacokinetics, MET depletion, antigenicity, and toxicity of rMETase were examined in macaque monkeys. Pharmacokinetic analysis showed that rMETase was eliminated with a T1/2 of 2.49 h. A 2-week i.v. administration of 4000 units/kg every 8 h/day for 2 weeks resulted in a steady-state depletion of plasma MET to less than 2 μm. The only manifest toxicity was decreased food intake and slight weight loss. Serum albumin and red-cell values declined transiently during treatment. Rechallenge on day 28 resulted in anaphylactic shock and death in one animal. Pretreatment with hydrocortisone prevented the anaphylactic reaction. Anti-rMETase antibodies (at 10−3) were found after the first challenge, increased to 10−6 after the fourth challenge, and decreased to 10−2 by 2 months post-therapy. Therefore, the therapeutic potential of rMETase is limited by its short plasma half-life and immunologic effects, including high antibody production in mice and anaphylactic reactions in monkeys. To overcome these limits, rMETase has been coupled to methoxypolyethylene glycol succinimidyl glutarate polyethylene glycol (MEGC-PEG-5000). The pharmacokinetics, antigenicity, and toxicity of MEGC-PEG-rMETase in macaque monkeys were evaluated using an escalating-dose strategy. In pharmacokinetic studies, a single 4000 units/kg dose showed that MEGC-PEG-rMETase holoenzyme activity was eliminated with a biological half-life of 1.3 h, and the MEGC-PEG-rMETase apoenzyme was eliminated with a biological half-life of 90 h, a 36-fold increase compared with non-PEGylated rMETase. The disparity in the T½ of the apoenzyme and the holoenzyme reflects the loss of co-factor pyridoxal-l-phosphate of the circulating MEGC-PEG-rMETase. A 7-day i.v. administration of 4000 units/kg every 12 h resulted in a steady-state depletion of plasma MET to <5 μmol/L. The only manifest toxicity was decreased food intake and slight weight loss. Red cell values and hemoglobin declined transiently. Subsequent challenges did not result in any immunologic reactions. Anti-MEGC-PEG-rMETase antibodies were 100- to 1000-fold less than antibodies elicited by naked rMETase, thereby suggesting clinical potential of MEGC-PEG-rMETase as a broad anticancer agent.

Key words

Recombinant methioninase rMETase Polyethylene glycol PEG PEG-rMEtase Macaque monkeys Safety Antigenicity Anaphylaxis Anemia Half-life Holoenzyme Apoenzyme Pyridoxal-l-Phosphate 


  1. 1.
    Hoffman RM (2015) Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey. Expert Opin Biol Ther 15:21–31CrossRefGoogle Scholar
  2. 2.
    Kawaguchi K, Igarashi K, Li S, Han Q, Tan Y, Miyake K, Kiyuna T, Miyake M, Murakami T, Chmielowski S, Nelson SD, Russell TA, Dry SM, Li Y, Unno M, Eilber FC, Hoffman RM (2018) Recombinant methioninase (rMETase) is an effective therapeutic for BRAF-V600E-negative as well as -positive melanoma in patient-derived orthotopic xenograft (PDOX) mouse models. Oncotarget 9:915–923Google Scholar
  3. 3.
    Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Kiyuna T, Miyake K, Miyake M, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Eckhardt MA, Unno M, Eilber FC, Hoffman RM (2018) Targeting methionine with oral recombinant methioninase (o-rMETase) arrests a patient-derived orthotopic xenograft (PDOX) model of BRAF-V600E mutant melanoma: implications for clinical cancer therapy and prevention. Cell Cycle 17(3):356–361CrossRefGoogle Scholar
  4. 4.
    Kawaguchi K, Miyake K, Han Q, Li S, Tan Y, Igarashi K, Lwin TM, Higuchi T, Kiyuna T, Miyake M, Oshiro H, Bouvet M, Unno M, Hoffman RM (2018) Targeting altered cancer methionine metabolism with recombinant methioninase (rMETase) overcomes partial gemcitabine-resistance and regresses a patient-derived orthotopic xenograft (PDOX) nude mouse model of pancreatic cancer. Cell Cycle 21:1–6Google Scholar
  5. 5.
    Kreis W, Hession C (1973) Isolation and purification of L-methionine-alpha-deamino-gamma-mercaptomethane-lyase (L-methioninase) from Clostridium sporogenes. Cancer Res 33:1862–1865Google Scholar
  6. 6.
    Tanaka H, Esaki N, Soda K (1977) Properties of L-methionine g-lyase from Pseudomonas ovalis. Biochemistry 16:100–106CrossRefGoogle Scholar
  7. 7.
    Hori H, Takabayashi K, Orvis L, Carson DA, Nobori T (1996) Gene cloning and characterization of Pseudomonas putida L-methionine α-deamino-γ-mercaptomethanelyase. Cancer Res 56:2116–2122PubMedGoogle Scholar
  8. 8.
    Tan Y, Xu M, Tan X-Z, Tan X-Y, Wang X, Saikawa Y, Nagahama T, Sun X, Lenz M, Hoffman RM (1997) Overexpression and large-scale production of recombinant l-methionine-α-deamino-γ-mercaptomethane-lyase for novel anticancer therapy. Protein Expr Purif 9:233–245CrossRefGoogle Scholar
  9. 9.
    Tan Y, Sun X, Xu M, Tan X-Z, Sasson A, Rashidi B, Han Q, Tan X-Y, Wang X, An Z, Sun F-X, Hoffman RM (1999) Efficacy of recombinant methioninase in combination with cisplatin on human colon tumors in nude mice. Clin Cancer Res 5:2157–2163Google Scholar
  10. 10.
    Yoshioka T, Wada T, Uchida N, Maki H, Yoshida H, Ide N, Kasai H, Hojo K, Shono K, Maekawa R, Yagi S, Hoffman RM, Sugita K (1998) Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil, and safety of recombinant methioninase. Cancer Res 58:2583–2587Google Scholar
  11. 11.
    Kokkinakis DM, Schold SC Jr, Hori H, Nobori T (1997) Effect of long-term depletion of plasma methionine on the growth and survival of human brain tumor xenografts in athymic mice. Nutr Cancer 29:195–204CrossRefGoogle Scholar
  12. 12.
    Kokkinakis DM, Wick JB, Zhou Q-X (2002) Metabolic response of normal and malignant tissue to acute and chronic methionine stress in athymic mice bearing human glial tumor xenografts. Chem Res Toxicol 15:1472–1479CrossRefGoogle Scholar
  13. 13.
    Murakami T, Li S, Han Q, Tan Y, Kiyuna T, Igarashi K, Kawaguchi K, Hwang HK, Miyaki K, Singh AS, Nelson SD, Dry SM, Li Y, Hiroshima Y, Lwin TM, DeLong JC, Chishima T, Tanaka K, Bouvet M, Endo I, Eilber FC, Hoffman RM (2017) Recombinant methioninase effectively targets a Ewing’s sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget 8:35630–35638PubMedPubMedCentralGoogle Scholar
  14. 14.
    Kawaguchi K, Igarashi K, Li S, Han Q, Tan Y, Kiyuna T, Miyake Y, Murakami T, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Unno M, Eilber FC, Hoffman RM (2017) Combination treatment with recombinant methioninase enables temozolomide to arrest a BRAF V600E melanoma growth in a patient-derived orthotopic xenograft. Oncotarget 8:85516–85525PubMedPubMedCentralGoogle Scholar
  15. 15.
    Tan Y, Zavala J Sr, Xu M, Zavala J Jr, Hoffman RM (1996) Serum methionine depletion without side effects by methioninase in metastatic breast cancer patients. Anticancer Res 16:3937–3942PubMedPubMedCentralGoogle Scholar
  16. 16.
    Tan Y, Zavala J Sr, Han Q, Xu M, Sun X, Tan X-Z, Tan X-Y, Magana R, Geller J, Hoffman RM (1997) Recombinant methioninase infusion reduces the biochemical endpoint of serum methionine with minimal toxicity in high-stage cancer patients. Anticancer Res 17:3857–3860PubMedPubMedCentralGoogle Scholar
  17. 17.
    Yang Z, Wang J, Yoshioka T, Li B, Lu Q, Li S, Sun X, Tan Y, Yagi S, Frenkel EP, Hoffman RM (2004) Pharmacokinetics, methionine depletion, and antigenicity of recombinant methioninase in primates. Clin Cancer Res 10:2131–2138CrossRefGoogle Scholar
  18. 18.
    Yang Z, Wang J, Lu Q, Xu J, Kobayashi Y, Takakura T, Takimoto A, Yoshioka T, Lian C, Chen C, Zhang D, Zhang Y, Li S, Sun X, Tan Y, Yagi S, Frenkel EP, Hoffman RM (2004) PEGylation confers greatly extended half-life and attenuated immunogenicity to recombinant methioninase in primates. Cancer Res 64:6673–6678CrossRefGoogle Scholar
  19. 19.
    Kozlowski A, Harris JM (2001) Improvements in protein PEGylation: pegylated interferons for treatment of hepatitis C. J Control Release 72:217–224CrossRefGoogle Scholar
  20. 20.
    Maeda H, Kabanov A, Kataska K, Okano T (2003) Advances in experimental medicine and biology: polymer drugs in the clinical stage, vol 519. Kluwer Academic/Plenum Publishers, DordrechtCrossRefGoogle Scholar
  21. 21.
    Park CWG, Chuo M Interferon polymer conjugates. United States Patent 5,951,974, September 14, 1999Google Scholar
  22. 22.
    Aguayo A, Cortes J, Thomas D, Pierce S, Keating M, Kantarjian H (1999) Combination therapy with methotrexate, vincristine, polyethylene-glycol conjugated-asparaginase, and prednisone in the treatment of patients with refractory or recurrent acute lymphoblastic leukemia. Cancer 86:1203–1209CrossRefGoogle Scholar
  23. 23.
    Pool R (1990) “Hairy enzymes” stay in the blood. Science 248:305CrossRefGoogle Scholar
  24. 24.
    Hershfield MS (1995) PEG-ADA replacement therapy for adenosine deaminase deficiency: an update after 8.5 years. Clin Immunol Immunopathol 76:S228–S232CrossRefGoogle Scholar
  25. 25.
    Sun X, Yang Z, Li S, Tan Y, Zhang N, Wang X, Yagi S, Yoshioka T, Takimoto A, Mitsushima K, Suginaka A, Frenkel EP, Hoffman RM (2003) In vivo efficacy of recombinant methioninase is enhanced by the combination of polyethylene glycol conjugation and pyridoxal 5′ phosphate supplementation. Cancer Res 63:8377–8383PubMedGoogle Scholar
  26. 26.
    Takakura T, Ito T, Yagi S, Notsu Y, Itakura T, Nakamura T, Inagaki K, Esaki N, Hoffman RM, Takimoto A (2006) High-level expression and bulk crystallization of recombinant l-methionine γ-lyase, an anticancer agent. Appl Microbiol Biotechnol 70:183–192CrossRefGoogle Scholar
  27. 27.
    Takakura T, Takimoto A, Notsu Y, Yoshida H, Ito T, Nagatome H, Ohno M, Kobayashi Y, Yoshioka T, Inagaki K, Yagi S, Hoffman RM, Esaki N (2006) Physicochemical and pharmacokinetic characterization of highly potent recombinant l-methionine γ-lyase conjugated with polyethylene glycol as an antitumor agent. Cancer Res 66:2807–2814CrossRefGoogle Scholar
  28. 28.
    Kudou D, Misaki S, Yamashita M, Tamura T, Takakura T, Yoshioka T, Yagi S, Hoffman RM, Takimoto A, Esaki N, Inagaki K et al (2007) J Biochem 141:535–544CrossRefGoogle Scholar
  29. 29.
    Takakura T, Mitsushima K, Yagi S, Inagaki K, Tanaka H, Esaki N, Soda K, Takimoto A et al (2004) Anal Biochem 327:233–240CrossRefGoogle Scholar
  30. 30.
    Jones BN, Gilligan JP (1983) O-Phthaldialdehyde precolumn derivatization and reversed-phase high-performance liquid chromatography of polypeptide hydrolysates and physiological fluids. J Chromatogr 266:471–482CrossRefGoogle Scholar
  31. 31.
    Judde JG, Ellis M, Frost P (1989) Biochemical analysis of the role of transmethylation in the methionine dependence of tumor cells. Cancer Res 49:4859–4865PubMedPubMedCentralGoogle Scholar
  32. 32.
    Tisdale MJ (1980) Effect of methionine deprivation on methylation and synthesis of macromolecules. Br J Cancer 42:121–128CrossRefGoogle Scholar
  33. 33.
    Guo H, Lishko V, Herrera H, Groce A, Kubota T, Hoffman RM (1993) Therapeutic tumor-specific cell-cycle block induced by methionine starvation in vivo. Cancer Res 53:5676–5679Google Scholar
  34. 34.
    Hoffman RM, Jacobsen SJ (1980) Reversible growth arrest in simian virus 40-transformed human fibroblasts. Proc Natl Acad Sci U S A 77:7306–7310CrossRefGoogle Scholar
  35. 35.
    Kokkinakis DM, von Wronski MA, Vuong TH, Brent TP, Schold SC Jr (1997) Regulation of O6-methylguanine-DNA methyltransferase by methionine in human tumour cells. Br J Cancer 75:779–788CrossRefGoogle Scholar
  36. 36.
    Stern PH, Hoffman RM (1986) Enhanced in vitro selective toxicity of chemotherapeutic agents for human cancer cells based on a metabolic defect. J Natl Cancer Inst 76:629–639CrossRefGoogle Scholar
  37. 37.
    Yano S, Takehara K, Zhao M, Tan Y, Han Q, Li S, Bouvet M, Fujiwara T, Hoffman RM (2016) Tumor-specific cell-cycle decoy by Salmonella typhimurium A1-R combined with tumor-selective cell-cycle trap by methioninase overcome tumor intrinsic chemoresistance as visualized by FUCCI imaging. Cell Cycle 15:1715–1723CrossRefGoogle Scholar
  38. 38.
    Yano S, Li S, Han Q, Tan Y, Bouvet M, Fujiwara T, Hoffman RM (2014) Selective methioninase-induced trap of cancer cells in S/G2 phase visualized by FUCCI imaging confers chemosensitivity. Oncotarget 5:8729–8736CrossRefGoogle Scholar
  39. 39.
    Goseki N, Yamazaki S, Shimojyu K, Kando F, Maruyama M, Endo M, Koike M, Takahashi H (1995) Synergistic effect of methionine-depleting total parenteral nutrition with 5-fluorouracil on human gastric cancer: a randomized, prospective clinical trial. Jpn J Cancer Res 86:484–489CrossRefGoogle Scholar
  40. 40.
    Miki K, Xu M, Gupta A, Ba Y, Tan Y, Al-Refaie W, Bouvet M, Makuuchi M, Moossa AR, Hoffman RM (2001) Methioninase cancer gene therapy with selenomethionine as suicide prodrug substrate. Cancer Res 61:6805–6810PubMedGoogle Scholar
  41. 41.
    Igarashi K, Kawaguchi K, Li S, Han Q, Tan Y, Murakami T, Kiyuna T, Miyake K, Miyake M, Singh AS, Eckhadt MA, Nelson SD, Russell TA, Dry SM, Li Y, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Singh RS, Eilber FC, Hoffman RM (2018) Recombinant methioninase in combination with DOX overcomes first-line DOX resistance in a patient-derived orthotopic xenograft nude-mouse model of undifferentiated spindle-cell sarcoma. Cancer Lett 417:168–173CrossRefGoogle Scholar
  42. 42.
    Kawaguchi K, Miyake K, Han Q, Li S, Tan Y, Igarashi K, Kiyuna T, Miyake M, Higuchi T, Oshiro H, Zhang Z, Razmjooei S, Wangsiricharoens S, Bowet M, Singh SR, Unnu M, Hoffman RM (2018) Oral recombinant methioninase (o-rMETase) is superior to injectable rMETase and overcomes acquired gemcitabine resistance in pancreatic cancer. Cancer Lett 432:251–259CrossRefGoogle Scholar
  43. 43.
    Miyake K, Kiyuna T, Li S, Han Q, Tan Y, Zhao M, Oshiro H, Kawaguchi K, Higuchi T, Zhang Z, Razmjooei S, Barangi M, Wangsiricharoen S, Murakami T, Singh AS, Li Y, Nelson SD, Eilber FC, Bouvet M, Hiroshima Y, Chishima T, Matsuyama R, Singh SR, Endo I, Hoffman RM (in press) Combining tumor-selective bacterial therapy with Salmonella typhimurium A1-R and cancer metabolism targeting with oral recombinant methioninase (o-rMETase) regressed a Ewing’s sarcoma in a PDOX model. Chemotherapy.
  44. 44.
    Igarashi K, Kawaguchi K, Li S, Han Q, Tan Y, Gainor E, Kiyuna T, Miyake K, Miyake M, Higuchi T, Oshiro H, Singh AS, Eckardt MA, Nelson SD, Russell TA, Dry SM, Li Y, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM (2018) Recombinant methioninase combined with doxorubicin (DOX) regresses a DOX-resistant Dynovial sarcoma in a patient-derived orthotopic xenograft (PDOX) mouse model. Oncotarget 9:19263–19272PubMedPubMedCentralGoogle Scholar
  45. 45.
    Igarashi K, Kawaguchi K, Kiyuna T, Miyake K, Miyake M, Li S, Han Q, Tan Y, Zhao M, Li Y, Nelson SD, Dry SM, Singh AS, Elliott IA, Russell TA, Eckardt MA, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM (2019) Tumor-targeting Salmonella typhimurium A1-R combined with recombinant methioninase and cisplatinum eradicates an osteosarcoma cisplatinum-resistant lung metastasis in a patient-derived orthotopic xenograft (PDOX) mouse model: decoy, trap and kill chemotherapy moves toward the clinic. Cell Cycle 17:801–809CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Robert M. Hoffman
    • 1
    • 2
    Email author
  • Zhijian Yang
    • 1
  • Yuying Tan
    • 1
  • Qinghong Han
    • 1
  • Shukuan Li
    • 1
  • Shigeo Yagi
    • 3
  1. 1.AntiCancer, Inc.San DiegoUSA
  2. 2.Department of SurgeryUniversity of CaliforniaSan DiegoUSA
  3. 3.AntiCancer JapanTokyoJapan

Personalised recommendations