Methioninase Gene Therapy

  • Robert M. HoffmanEmail author
  • Kenji Miki
  • Waddah Al-Refaie
  • Mingxu Xu
  • Yuying Tan
Part of the Methods in Molecular Biology book series (MIMB, volume 1866)


Recombinant methioninase (rMETase) derived from Pseudomonas putida targets the elevated methionine (MET) requirement of cancer cells (methionine dependence) and has shown efficacy against a variety of cancer types in mouse models. To enhance the efficacy of rMETase, we constructed the pLGFP-METSN retrovirus encoding the P. putida methioninase (METase) gene fused with the green fluorescent protein (GFP) gene. pLGFP-METSN or control vector pLGFPSN was introduced into the human lung cancer cell line H460. The retrovirus-mediated METase gene transfer decreased the intracellular MET level of the cancer cells and consequently enhanced the efficacy of treatment with the rMETase protein. The rMETase gene was introduced into an adenovirus. rAd-METase transduction of human OVACAR-8 ovarian cancer cells and human fibrosarcoma HT1080 cells in vitro and in vivo resulted in high levels of METase expression up to 10% or more of the total protein of the cells, depending on the multiplicity of infection. The combination of rAd-METase and rMETase was synergistic to kill these cells. Normal fibroblasts, on the other hand, appeared relatively resistant to the METase gene in the presence of rMETase. Adenoviral METase-transduced cancer cells were used in combination with selenomethionine, releasing highly toxic methylselenol, which killed both the cancer cells containing the METase gene and bystanders. Methylselenol damaged the mitochondria via oxidative stress and caused cytochrome c release into the cytosol, thereby activating the caspase cascade and cancer-cell apoptosis. Adenoviral METase-gene/SeMET treatment also inhibited tumor growth in rodents and significantly prolonged their survival. AdMETase/SeMET therapy was effective against Bcl-2-overproducing A549 lung cancer cells, which were resistant to staurosporine-induced apoptosis, with a strong bystander effect. The combination of Ad-METase/SeMET and doxorubicin (DOX) delayed the growth of the H460 human lung cancer, growing subcutaneously in nude mice. These results demonstrate the potential of methionine restriction (MR) for cancer treatment.

Key words

Cancer Methionine dependence Gene cloning Methioninase Adenovirus GFP Gene therapy Selenomethionine Prodrug Methylselenol By-stander effect 


  1. 1.
    Goseki N, Yamazaki S, Endo M, Onodera T, Kosaki G, Hibino Y, Kuwahata T (1992) Antitumor effect of methionine-depleting total parenteral nutrition with doxorubicin administration on Yoshida sarcoma-bearing rats. Cancer 69:1865–1872CrossRefGoogle Scholar
  2. 2.
    Hoshiya Y, Guo H, Kubota T, Asanuma F, Yamada Y, Koh J, Kitajima M, Hoffman RM (1995) Human tumors are methionine dependent in vivo. Anticancer Res 15:717–718Google Scholar
  3. 3.
    Guo H, Tan Y, Kubota T, Moossa AR, Hoffman RM (1996) Methionine depletion modulates the antitumor and antimetastatic efficacy of ethionine. Anticancer Res 16:2719–2723PubMedGoogle Scholar
  4. 4.
    Goseki N, Yamazaki S, Shimojyo K, Kando F, Maruyama M, Endo M, Koike M, Takahashi H (1995) Synergistic effect of methionine-depleting total parenteral nutrition with 5-fluouracil on human gastric cancer: a randomized prospective clinical trial. Jpn J Cancer Res 86:484–489CrossRefGoogle Scholar
  5. 5.
    Tan Y, Xu M, Tan XZ, Tan XY, Wang X, Saikawa S, Nagashima T, Sun X, Lenz M, Hoffman RM (1997) Overexpression and large-scale production of recombinant l-methionine-α-deamino-γ-mercaptomethane-lyase for novel anticancer therapy. Protein Expr Purif 9:233–245CrossRefGoogle Scholar
  6. 6.
    Hori H, Takabayashi K, Orvis L, Carson DA, Nobori T (1996) Gene cloning and characterization of Pseudomonas putida l-methionine-α-deamino-γ-mercaptomethane-lyase. Cancer 56:2116–2122Google Scholar
  7. 7.
    Yoshioka T, Wada T, Uchida N, Maki H, Yoshida H, Ide N, Kasai H, Hojo K, Shono K, Maekawa R, Yagi S, Hoffman RM, Sugita K (1998) Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil, and safety of recombinant methioninase. Cancer Res 58:2583–2587Google Scholar
  8. 8.
    Tan Y, Sun X, Xu M, Tan X-Z, Sasson A, Rashidi B, Han Q, Tan X-Y, Wang X, An Z, Sun F-X, Hoffman RM (1999) Efficacy of recombinant methioninase in combination with cisplatin on human colon tumors in nude mice. Clin Cancer Res 5:2157–2163Google Scholar
  9. 9.
    Kokkinakis DM, Hoffman RM, Frenkel EP, Wick JB, Han Q, Xu M, Tan Y, Schold SC (2001) Synergy between methionine stress and chemotherapy in the treatment of brain tumor xenografts in athymic mice. Cancer Res 61:4017–4023Google Scholar
  10. 10.
    Murakami T, Li S, Han Q, Tan Y, Kiyuna T, Igarashi K, Kawaguchi K, Hwang HK, Miyaki K, Singh AS, Hiroshima Y, Lwin TM, DeLong JC, Chishima T, Tanaka K, Bouvet M, Endo I, Eilber FC, Hoffman RM (2017) Recombinant methioninase effectively targets a Ewing’s sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget 8:35630–35638PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kawaguchi K, Igarashi K, Li S, Han Q, Tan Y, Kiyuna T, Miyake Y, Murakami T, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Unno M, Eilber FC, Hoffman RM (2017) Combination treatment with recombinant methioninase enables temozolomide to arrest a BRAF V600E melanoma growth in a patient-derived orthotopic xenograft. Oncotarget 8:85516–85525PubMedPubMedCentralGoogle Scholar
  12. 12.
    Igarashi K, Kawaguchi K, Li S, Han Q, Tan Y, Murakami T, Kiyuna T, Miyake K, Miyake M, Singh AS, Eckhadt MA, Nelson SD, Russell TA, Dry SM, Li Y, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Singh RS, Eilber FC, Hoffman RM (2018) Recombinant methioninase in combination with DOX overcomes first-line DOX resistance in a patient-derived orthotopic xenograft nude-mouse model of undifferentiated spindle-cell sarcoma. Cancer Lett 417:168–173CrossRefGoogle Scholar
  13. 13.
    Miki K, Xu M, An Z, Wang X, Yang M, Al-Refaie W, Sun X, Baranov E, Tan Y, Chishima T, Shimada H, Moossa AR, Hoffman RM (2000) Survival efficacy of the combination of the methioninase gene and methioninase in a lung cancer orthotopic model. Cancer Gene Ther 7:332–338CrossRefGoogle Scholar
  14. 14.
    Miki K, Xu M, Gupta A, Ba Y, Tan Y, Al-Refaie W, Bouvet M, Makuuchi M, Moossa AR, Hoffman RM (2001) Methioninase cancer gene therapy with selenomethionine as suicide prodrug substrate. Cancer Res 61:6805–6810PubMedGoogle Scholar
  15. 15.
    Gupta A, Miki K, Xu M, Yamamoto N, Moossa AR, Hoffman RM (2003) Combination efficacy of doxorubicin and adenoviral methioninase gene therapy with prodrug selenomethionine. Anticancer Res 23:1181–1188PubMedGoogle Scholar
  16. 16.
    Yamamoto N, Gupta A, Xu M, Miki K, Tsujimoto Y, Tsuchiya H, Tomita K, Moossa AR, Hoffman RM (2003) Methioninase gene therapy with selenomethionine induces apoptosis in Bcl-2-overproducing lung cancer cells. Cancer Gene Ther 10:445–450CrossRefGoogle Scholar
  17. 17.
    Tan Y, Sun X, Xu M, An Z, Tan X, Han Q, Miljkovic DA, Yang M, Hoffman RM (1998) Polyethylene glycol conjugation of recombinant methioninase for cancer therapy. Protein Expr Purif 12:45–52CrossRefGoogle Scholar
  18. 18.
    Jones BN, Gilligan JP (1983) O-pthaldialdehyde pre-column derivatization and reversed-phase high-performance liquid chromatography of polypeptide hydrolysates and physiological fluids. J Chromatogr 266:471–482CrossRefGoogle Scholar
  19. 19.
    Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48:589–601PubMedGoogle Scholar
  20. 20.
    Wang X, Fu X, Hoffman RM (1992) A new patient-like metastatic model of human lung cancer constructed orthotopically with intact tissue via thoracotomy in immunodeficient mice. Int J Cancer 5:992–995Google Scholar
  21. 21.
    Wang W, Fu X, Hoffman RM (1992) A patient-like metastasizing model of human lung adenocarcinoma constructed via thoracotomy in nude mice. Anticancer Res 12:1399–1402PubMedGoogle Scholar
  22. 22.
    Tanaka H, Esaki N, Soda K (1977) Properties of L-methionine-g-lyase from Pseudomonas ovalis. Biochemistry 16:100–106CrossRefGoogle Scholar
  23. 23.
    Keown WA, Campbell CR, Kucherlapati RS (1991) Methods for introducing DNA in mammalian cells. In: Goeddel DV (ed) Methods in enzymology, gene expression technology, vol 185. Academic Press, Inc., San Diego, pp 527–537CrossRefGoogle Scholar
  24. 24.
    Schilder RJ, Hall L, Monks A, Handel LM, Fornace AJ Jr, Ozols RF, Fojo AT, Hamilton TC (1990) Metallothionine in gene expression and resistance to cisplatin in human ovarian cancer. Int J Cancer 45:416–422CrossRefGoogle Scholar
  25. 25.
    Rasheed S, Nelson-Rees WA, Toth EM, Arnstein P, Gardner MB (1974) Characterization of newly derived human sarcoma cell line (HT-1080). Cancer 33:1027–1033CrossRefGoogle Scholar
  26. 26.
    Chou TC, Talalay P (1987) Applications of the effect principle for the assessment of low-dose risk of carcinogens and for the quantitation of synergism, antagonism or chemotherapeutic agents. In: New avenues in development cancer chemotherapy, Bristol Myers symposium series. Academic Press, New York, pp 37–64Google Scholar
  27. 27.
    Wills KN, Maneval DC, Menzel P, Harris MP, Sutjipto S, Vaillancourt MT, Huang WM, Johnson DE, Anderson SC, Wen SF et al (1994) Development and characterization of recombinant adenoviruses encoding human p53 for gene therapy of cancer. Hum Gene Ther 5:1079–1088CrossRefGoogle Scholar
  28. 28.
    Ganther HE (1990) Activity of methylated forms of selenium in cancer prevention. Cancer Res 50:1206–1211PubMedGoogle Scholar
  29. 29.
    Yan L, Spallholz JE (1993) Generation of reactive oxygen species from the reaction of selenium compounds with thiols and mammary tumor cells. Biochem Pharmacol 45:429–437PubMedGoogle Scholar
  30. 30.
    Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312CrossRefGoogle Scholar
  31. 31.
    Cai J, Yang J, Jones DP (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta 1366:139–149CrossRefGoogle Scholar
  32. 32.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489CrossRefGoogle Scholar
  33. 33.
    Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316CrossRefGoogle Scholar
  34. 34.
    Iwahashi H, Eguchi Y, Yasuhara N, Hanafusa T, Matsuzawa Y, Tsujimoto Y (1997) Synergistic anti-apoptotic activity between Bcl-2 and SMN implicated in spinal atrophy. Nature 390:413–417CrossRefGoogle Scholar
  35. 35.
    Nutt LK, Chandra J, Pataer A, Fang B, Roth JA, Swisher SG, O'Neil RG, McConkey DJ (2002) Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem 277:20301–20308CrossRefGoogle Scholar
  36. 36.
    Hamel W, Magnelli L, Chiarugi VP, Israel MA (1996) Herpes simplex virus thymidine kinase/ganciclovir-mediated apoptosis death of bystander cells. Cancer Res 56:2697–2702PubMedGoogle Scholar
  37. 37.
    Spallholz JE (1994) On the nature of selenium toxicity and carcinostatic activity. Free Radic Biol Med 17:45–64CrossRefGoogle Scholar
  38. 38.
    Stewart MS, Spallholz JE, Nelder KH, Pence BC (1999) Selenium compounds have disparate abilities to impose oxidative stress and induce apoptosis. Free Radic Biol Med 26:42–48CrossRefGoogle Scholar
  39. 39.
    Clark LC, Combs GF, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL Jr, Park HK, Sanders BB Jr, Smith CL, Taylor JR (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. JAMA 276:1957–1963CrossRefGoogle Scholar
  40. 40.
    Chaudiere J, Courtin O, Leclaire J (1992) Glutathione oxidase activity of selenocystamine: a mechanistic study. Arch Biochem Biophys 296:328–336CrossRefGoogle Scholar
  41. 41.
    Virani NA, Thavathiru E, McKernan P, Moore K, Benbrook DM, Harrison RG (2018) Anti-CD73 and Anti-OX40 immunotherapy coupled with a novel biocompatible enzyme prodrug system for the treatment of recurrent, metastatic ovarian cancer. Cancer Lett 425:174–182. Scholar
  42. 42.
    Xin L, Yang WF, Zhang HT, Li YF, Liu C (2018) The mechanism study of lentiviral vector carrying methioninase enhances the sensitivity of drug-resistant gastric cancer cells to cisplatin. Br J Cancer 118:1189. Scholar
  43. 43.
    Lien EC, Ghisolfi L, Geck RC, Asara JM, Toker A (2017) Oncogenic PI3K promotes methionine dependency in breast cancer cells through the cystine-glutamate antiporter xCT. Sci Signal 10(510):eaao6604. Scholar
  44. 44.
    Hoffman RM (2017) Patient-derived mouse models of cancer. In: Coleman WB, Tsongalis GJ (eds) Molecular and translational medicine. Humana Press, New JerseyGoogle Scholar
  45. 45.
    Tisdale MT (1980) Changes in tRNA methyltransferase activity and cellular S-adenosylmethionine content following methionine deprivation. Biochim Biophys Acta 609:296–305CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Robert M. Hoffman
    • 1
    • 2
    Email author
  • Kenji Miki
    • 1
    • 2
  • Waddah Al-Refaie
    • 1
    • 2
  • Mingxu Xu
    • 1
  • Yuying Tan
    • 1
  1. 1.AntiCancer, Inc.San DiegoUSA
  2. 2.Department of SurgeryUniversity of CaliforniaSan DiegoUSA

Personalised recommendations