Protocol for Agrobacterium-Mediated Transformation and Transgenic Plant Production of Switchgrass

  • QiuXia ChenEmail author
  • Guo-Qing Song
Part of the Methods in Molecular Biology book series (MIMB, volume 1864)


Switchgrass (Panicum virgatum L.) is one of the most important bioenergy crops for lignocellulose ethanol production. Molecular breeding provides a powerful tool to supplement conventional switchgrass breeding by introducing or editing genes of interest. In this chapter, we describe Agrobacterium tumefaciens-mediated transformation protocols for lowland tetraploid switchgrass cultivar Alamo.

Key words

Agrobacterium tumefaciens Genetic transformation Plant regeneration Somatic embryogenesis 


  1. 1.
    Vogel KP (2004) Switchgrass. In: Moser LE, Burson BL, Sollenberger LE (eds) Warm-season (C4) grasses, Agronomy monograph, vol 45. ASA, CSSA, and SSSA, MadisonGoogle Scholar
  2. 2.
    McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenerg 28:515–535CrossRefGoogle Scholar
  3. 3.
    Bouton J (2008) Improvements of switchgrass as a bioenergy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, Berlin, HeidelbergGoogle Scholar
  4. 4.
    Merrick P, Fei SZ (2015) Plant regeneration and genetic transformation in switchgrass – a review. J Integr Agric 14(3):483–493. CrossRefGoogle Scholar
  5. 5.
    Somleva MN, Tomaszewski Z, Conger BV (2002) Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci 42:2080–2087CrossRefGoogle Scholar
  6. 6.
    Somleva MN (2006) Switchgrass (Panicum virgatum L.). In: Wang K (ed) Methods in molecular biology, Agrobacterium protocols, vol 344. Humana Press Inc, TotowaGoogle Scholar
  7. 7.
    Somleva M, Snell K, Beaulieu J, Peoples O, Garrison B, Patterson N (2008) Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop. Plant Biotechnol J 6:663–678CrossRefGoogle Scholar
  8. 8.
    Burris JN, Mann DGJ, Joyce BL, Stewart CN (2009) An improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass. BioEnergy Res 2:267–274CrossRefGoogle Scholar
  9. 9.
    Xi Y, Fu C, Ge Y, Nandakumar R, Hisano H, Bouton J, Wang Z-Y (2009) Agrobacterium-mediated transformation of switchgrass and inheritance of the transgenes. BioEnerg Res 2:275–283CrossRefGoogle Scholar
  10. 10.
    Richards HA, Rudas VA, Sun H, McDaniel JK, Tomaszewski Z, Conger BV (2001) Construction of a GFP-BAR plasmid and its use for switchgrass transformation. Plant Cell Rep 20:48CrossRefGoogle Scholar
  11. 11.
    Song G, Walworth A, Hancock JF (2012) Factors influencing Agrobacterium-mediated transformation of switchgrass cultivars. Plant Cell Tiss Org Cult 108:445–453CrossRefGoogle Scholar
  12. 12.
    Li RY, Qu RD (2011) High throughput agrobacterium-mediated switchgrass transformation. Biomass Bioenergy 35(3):1046–1054. CrossRefGoogle Scholar
  13. 13.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  14. 14.
    Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2(4):208–218. CrossRefGoogle Scholar
  15. 15.
    Doyle JJDJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  16. 16.
    Seo M, Takahara M, Takamizo T (2010) Optimization of culture conditions for plant regeneration of Panicum spp. through somatic embryogenesis. Grassl Sci 56(1):6–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Horticulture, Plant Biotechnology Resource and Outreach CenterMichigan State UniversityEast LansingUSA

Personalised recommendations