Ensifer-Mediated Transformation (EMT) of Rice (Monocot) and Oilseed Rape (Dicot)

  • Dheeraj Singh Rathore
  • Evelyn Zuniga-Soto
  • Ewen MullinsEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1864)


Ensifer adhaerens OV14 underpins the successful crop transformation protocol, termed Ensifer-mediated transformation (EMT). The adaptability and efficiency of EMT technology to successfully transform both monocot and dicots have been previously reported. To facilitate community users’ transition to EMT, the modified rice and oilseed rape plants generated in this work were developed using EMT protocols that were grounded in standard Agrobacterium-mediated transformation (AMT) processes. Therefore, this chapter describes simple yet crucial steps involved in transferring the use of EMT of rice and oilseed rape for generation of fertile and independent transgenic lines.

Key words

Ensifer adhaerens Transformation Monocot Dicot Plant 


  1. 1.
    Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67(1):16–37CrossRefGoogle Scholar
  2. 2.
    Nester E (2008) Agrobacterium: the natural genetic engineer 100 years later. in APSnet Features. University of Washington, Seattle, WAGoogle Scholar
  3. 3.
    Hooykaas P, Klapwijk P, Nuti M, Schilperoort R, Rorsch A (1977) Transfer of the Agrobacterium tumefaciens Ti plasmid to a virulent Agrobacteria and to Rhizobium ex planta. J Gen Microbiol 98(477–474):484Google Scholar
  4. 4.
    Van Veen R, den Dulk-Ras H, Bisseling T, Schilperoort R, Hooykaas P (1988) Crown gall tumor and root nodule formation by the bacterium Phyllobacterium myrsinacearum after the introduction of an Agrobacterium Ti plasmid or a Rhizobium Sym plasmid. Mol Plant Microbe Interact 1:231–234CrossRefGoogle Scholar
  5. 5.
    Broothaerts W et al (2005) Gene transfer to plants by diverse species of bacteria. Nature 433(7026):629–633CrossRefGoogle Scholar
  6. 6.
    Rahmawati S, Jefferson O, Sopandie D, Suharsono S, Loedin I (2010) Comparative analysis of rice transformation using Agrobacterium tumefaciens and Rhyzobium leguminosarum. Indian J Biotechnol 15(1):37–45Google Scholar
  7. 7.
    Wendt T, Doohan F, Winckelmann D, Mullins E (2011) Gene transfer into Solanum tuberosum via Rhizobium spp. Transgenic Res 20(2):377–386CrossRefGoogle Scholar
  8. 8.
    Lacroix B, Citovsky V (2016) Transfer of DNA from bacteria to eukaryotes. mBio 7(4):e00863-16CrossRefGoogle Scholar
  9. 9.
    Lacroix B, Citovsky V (2016) A functional bacterium-to-plant DNA transfer machinery of rhizobium etli. PLoS Pathog 12(3):e1005502CrossRefGoogle Scholar
  10. 10.
    Altpeter F et al (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28(7):1510–1520PubMedPubMedCentralGoogle Scholar
  11. 11.
    Wendt T, Doohan F, Mullins E (2012) Production of Phytophthora infestans-resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14. Transgenic Res 21(3):567–578CrossRefGoogle Scholar
  12. 12.
    Casida JLE (1982) Ensifer adhaerens gen. Nov., sp. nov.: a bacterial predator of bacteria in soil. Int J Syst Bacteriol 32(1):339–345CrossRefGoogle Scholar
  13. 13.
    Germida JJ, Casida LE (1983) Ensifer adhaerens predatory activity against other bacteria in soil, as monitored by indirect phage analysis. Appl Environ Microbiol 45(4):1380–1388PubMedPubMedCentralGoogle Scholar
  14. 14.
    Rogel MA, Hernandez-Lucas I, Kuykendall LD, Balkwill DL, Martinez-Romero E (2001) Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 67(7):3264–3268CrossRefGoogle Scholar
  15. 15.
    Zhou G et al (2013) Biodegradation of the neonicotinoid insecticide thiamethoxam by the nitrogen-fixing and plant-growth-promoting rhizobacterium Ensifer adhaerens strain TMX-23. Appl Microbiol Biotechnol 97(9):4065–4074CrossRefGoogle Scholar
  16. 16.
    Zhou GC et al (2014) The metabolism of neonicotinoid insecticide thiamethoxam by soil enrichment cultures, and the bacterial diversity and plant growth-promoting properties of the cultured isolates. J Environ Sci Health B 49(6):381–390CrossRefGoogle Scholar
  17. 17.
    Rudder S, Doohan F, Creevey CJ, Wendt T, Mullins E (2014) Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes. BMC Genomics 15:268–285CrossRefGoogle Scholar
  18. 18.
    Zuniga-Soto E, Mullins E, Dedicova B (2015) Ensifer-mediated transformation: an efficient non-agrobacterium protocol for the genetic modification of rice. Springerplus 4(1):1–10CrossRefGoogle Scholar
  19. 19.
    Rathore DS et al (2015) Profiling antibiotic resistance and electrotransformation potential of Ensifer adhaerens OV14; a non-agrobacterium species capable of efficient rates of plant transformation. FEMS Microbiol Lett 362(17):fnv126CrossRefGoogle Scholar
  20. 20.
    Rathore DS, Doohan F, Mullins E (2016) Capability of the plant-associated bacterium, Ensifer adhaerens strain OV14, to genetically transform its original host Brassica napus. Plant Cell Tiss Organ Cult 127(1):85–94CrossRefGoogle Scholar
  21. 21.
  22. 22.
  23. 23.
    Chu C (1978) The N6 medium and its applications to anther culture of cereal crops. In: Proceedings of symposium on plant tissue culture. Science Press, Peking, pp 45–50Google Scholar
  24. 24.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Dheeraj Singh Rathore
    • 1
  • Evelyn Zuniga-Soto
    • 1
  • Ewen Mullins
    • 1
    Email author
  1. 1.Department of Crop Science, TeagascCarlow R93 XE12Republic of Ireland

Personalised recommendations